The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

A central limit theorem for triangular arrays of weakly dependent random variables, with applications in statistics

Michael H. Neumann — 2013

ESAIM: Probability and Statistics

We derive a central limit theorem for triangular arrays of possibly nonstationary random variables satisfying a condition of weak dependence in the sense of Doukhan and Louhichi [84 (1999) 313–342]. The proof uses a new variant of the Lindeberg method: the behavior of the partial sums is compared to that of partial sums of Gaussian random variables. We also discuss a few applications in statistics which show that our central limit theorem is tailor-made for statistics of different type.

Page 1

Download Results (CSV)