A central limit theorem for triangular arrays of weakly dependent random variables, with applications in statistics
ESAIM: Probability and Statistics (2013)
- Volume: 17, page 120-134
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topNeumann, Michael H.. "A central limit theorem for triangular arrays of weakly dependent random variables, with applications in statistics." ESAIM: Probability and Statistics 17 (2013): 120-134. <http://eudml.org/doc/274351>.
@article{Neumann2013,
abstract = {We derive a central limit theorem for triangular arrays of possibly nonstationary random variables satisfying a condition of weak dependence in the sense of Doukhan and Louhichi [Stoch. Proc. Appl. 84 (1999) 313–342]. The proof uses a new variant of the Lindeberg method: the behavior of the partial sums is compared to that of partial sums of dependent Gaussian random variables. We also discuss a few applications in statistics which show that our central limit theorem is tailor-made for statistics of different type.},
author = {Neumann, Michael H.},
journal = {ESAIM: Probability and Statistics},
keywords = {central limit theorem; Lindeberg method; weak dependence; bootstrap; triangular array},
language = {eng},
pages = {120-134},
publisher = {EDP-Sciences},
title = {A central limit theorem for triangular arrays of weakly dependent random variables, with applications in statistics},
url = {http://eudml.org/doc/274351},
volume = {17},
year = {2013},
}
TY - JOUR
AU - Neumann, Michael H.
TI - A central limit theorem for triangular arrays of weakly dependent random variables, with applications in statistics
JO - ESAIM: Probability and Statistics
PY - 2013
PB - EDP-Sciences
VL - 17
SP - 120
EP - 134
AB - We derive a central limit theorem for triangular arrays of possibly nonstationary random variables satisfying a condition of weak dependence in the sense of Doukhan and Louhichi [Stoch. Proc. Appl. 84 (1999) 313–342]. The proof uses a new variant of the Lindeberg method: the behavior of the partial sums is compared to that of partial sums of dependent Gaussian random variables. We also discuss a few applications in statistics which show that our central limit theorem is tailor-made for statistics of different type.
LA - eng
KW - central limit theorem; Lindeberg method; weak dependence; bootstrap; triangular array
UR - http://eudml.org/doc/274351
ER -
References
top- [1] D.W.K. Andrews, Non-strong mixing autoregressive processes, J. Appl. Probab.21 (1984) 930–934. Zbl0552.60049MR766830
- [2] J.M. Bardet, P. Doukhan, G. Lang and N. Ragache, Dependent Lindeberg central limit theorem and some applications. ESAIM : PS 12 (2008) 154–172. Zbl1187.60013MR2374636
- [3] P.J. Bickel and P. Bühlmann, A new mixing notion and functional central limit theorems for a sieve bootstrap in time series. Bernoulli5 (1999) 413–446. Zbl0954.62102MR1693612
- [4] P. Billingsley, The Lindeberg-Lévy theorem for martingales. Proc. Amer. Math. Soc.12 (1961) 788–792. Zbl0129.10701MR126871
- [5] P. Billingsley, Convergence of Probability Measures. Wiley, New York (1968). Zbl0944.60003MR233396
- [6] C. Coulon-Prieur and P. Doukhan, A triangular central limit theorem under a new weak dependence condition. Stat. Probab. Lett.47 (2000) 61–68. Zbl0956.60006MR1745670
- [7] R. Dahlhaus, Fitting time series models to nonstationary processes. Ann. Stat.25 (1997) 1–37. Zbl0871.62080MR1429916
- [8] R. Dahlhaus, Local inference for locally stationary time series based on the empirical spectral measure. J. Econ.151 (2009) 101–112. MR2559818
- [9] J. Dedecker, A central limit theorem for stationary random fields. Probab. Theory Relat. Fields110 (1998) 397–426. Zbl0902.60020MR1616496
- [10] J. Dedecker and F. Merlevède, Necessary and sufficient conditions for the conditional central limit theorem. Ann. Probab.30 (2002) 1044–1081. Zbl1015.60016MR1920101
- [11] J. Dedecker and E. Rio, On the functional central limit theorem for stationary processes. Ann. Inst. Henri Poincaré Série B36 (2000) 1–34. Zbl0949.60049MR1743095
- [12] J. Dedecker, P. Doukhan, G. Lang, J.R. León, S. Louhichi and C. Prieur, Weak Dependence : With Examples and Applications. Springer-Verlag. Lect. Notes Stat. 190 (2007). Zbl1165.62001MR2338725
- [13] P. Doukhan, Mixing : Properties and Examples. Springer-Verlag. Lect. Notes Stat. 85 (1994). Zbl0801.60027MR1312160
- [14] P. Doukhan and S. Louhichi, A new weak dependence condition and application to moment inequalities. Stoch. Proc. Appl.84 (1999) 313–342. Zbl0996.60020MR1719345
- [15] I.A. Ibragimov, Some limit theorems for stationary processes. Teor. Veroyatn. Primen. 7 (1962) 361–392 (in Russian). [English translation : Theory Probab. Appl. 7 (1962) 349–382]. Zbl0119.14204MR148125
- [16] I.A. Ibragimov, A central limit theorem for a class of dependent random variables. Teor. Veroyatnost. i Primenen. 8 (1963) 89–94 (in Russian). [English translation : Theor. Probab. Appl. 8 (1963) 83–89]. Zbl0123.36103MR151997
- [17] I.A. Ibragimov, A note on the central limit theorem for dependent random variables. Teor. Veroyatnost. i Primenen. 20 (1975) 134–140 (in Russian). [English translation : Theor. Probab. Appl. 20 (1975) 135–141]. Zbl0335.60023MR362448
- [18] J.W. Lindeberg, Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung, Math. Zeitschr.15 (1922) 211–225. Zbl48.0602.04MR1544569JFM48.0602.04
- [19] J.S. Liu, Siegel’s formula via Stein’s identities. Statist. Probab. Lett.21 (1994) 247–251. Zbl0813.62049MR1310101
- [20] H. Lütkepohl, Handbook of Matrices. Wiley, Chichester (1996). Zbl0856.15001MR1433592
- [21] M.H. Neumann and E. Paparoditis, Goodness-of-fit tests for Markovian time series models : Central limit theory and bootstrap approximations. Bernoulli14 (2008) 14–46. Zbl1155.62058MR2401652
- [22] M.H. Neumann and E. Paparoditis, A test for stationarity. Manuscript (2011).
- [23] M.H. Neumann and R. von Sachs, Wavelet thresholding in anisotropic function classes and application to adaptive estimation of evolutionary spectra. Ann. Statist.25 (1997) 38–76. Zbl0871.62081MR1429917
- [24] E. Rio, About the Lindeberg method for strongly mixing sequences. ESAIM : PS 1 (1995) 35–61. Zbl0869.60021MR1382517
- [25] M. Rosenblatt, A central limit theorem and a strong mixing condition. Proc. Natl. Acad. Sci. USA42 (1956) 43–47. Zbl0070.13804MR74711
- [26] M. Rosenblatt, Linear processes and bispectra. J. Appl. Probab.17 (1980) 265–270. Zbl0423.60043MR557456
- [27] V.A. Volkonski and Y.A. Rozanov, Some limit theorems for random functions, Part I. Teor. Veroyatn. Primen. 4 (1959) 186–207 (in Russian). [English translation : Theory Probab. Appl. 4 (1959) 178–197]. Zbl0092.33502
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.