We study the behavior at infinity of non-zero constant Jacobian polynomial maps f = (P,Q) in ℂ² by analyzing the influence of the Jacobian condition on the structure of Newton-Puiseux expansions of branches at infinity of level sets of the components. One of the results obtained states that the Jacobian conjecture in ℂ² is true if the Jacobian condition ensures that the restriction of Q to the curve P = 0 has only one pole.
We study the structure of a differentiable autonomous system on the plane with non-positive divergence outside a bounded set. It is shown that under certain conditions such a system has a global attractor. The main result here can be seen as an improvement of the results of Olech and Meisters in [7,9] concerning the global asymptotic stability conjecture of Markus and Yamabe and the Jacobian Conjecture.
It is shown that every polynomial function P:ℂ² → ℂ with irreducible fibres of the same genus must be a coordinate. Consequently, there do not exist counterexamples F = (P,Q) to the Jacobian conjecture such that all fibres of P are irreducible curves with the same genus.
In certain cases the invertibility of a polynomial map F = (P,Q): ℂ²→ ℂ² can be characterized by the irreducibility and the rationality of the curves aP+bQ = 0, (a:b) ∈ ℙ¹.
We present some estimates on the geometry of the exceptional value sets of non-zero constant Jacobian polynomial maps of ℂ² and their components.
We show that the non-proper value set of a polynomial map (P,Q): ℂ² → ℂ² satisfying the Jacobian condition detD(P,Q) ≡ const ≠ 0, if non-empty, must be a plane curve with one point at infinity.
A non-zero constant Jacobian polynomial map F=(P,Q):ℂ² → ℂ² has a polynomial inverse if the component P is a simple polynomial, i.e. its regular extension to a morphism p:X → ℙ¹ in a compactification X of ℂ² has the following property: the restriction of p to each irreducible component C of the compactification divisor D = X-ℂ² is of degree 0 or 1.
A polynomial map F = (P,Q) ∈ ℤ[x,y]² with Jacobian has a polynomial inverse with integer coefficients if the complex plane curve P = 0 has infinitely many integer points.
We consider nonsingular polynomial maps F = (P,Q): ℝ² → ℝ² under the following regularity condition at infinity : There does not exist a sequence of complex singular points of F such that the imaginary parts tend to (0,0), the real parts tend to ∞ and . It is shown that F is a global diffeomorphism of ℝ² if it satisfies Condition and if, in addition, the restriction of F to every real level set is proper for values of |c| large enough.
Download Results (CSV)