Non-zero constant Jacobian polynomial maps of ²

Nguyen Van Chau

Annales Polonici Mathematici (1999)

  • Volume: 71, Issue: 3, page 287-310
  • ISSN: 0066-2216

Abstract

top
We study the behavior at infinity of non-zero constant Jacobian polynomial maps f = (P,Q) in ℂ² by analyzing the influence of the Jacobian condition on the structure of Newton-Puiseux expansions of branches at infinity of level sets of the components. One of the results obtained states that the Jacobian conjecture in ℂ² is true if the Jacobian condition ensures that the restriction of Q to the curve P = 0 has only one pole.

How to cite

top

Nguyen Van Chau. "Non-zero constant Jacobian polynomial maps of $ℂ²$." Annales Polonici Mathematici 71.3 (1999): 287-310. <http://eudml.org/doc/262821>.

@article{NguyenVanChau1999,
abstract = {We study the behavior at infinity of non-zero constant Jacobian polynomial maps f = (P,Q) in ℂ² by analyzing the influence of the Jacobian condition on the structure of Newton-Puiseux expansions of branches at infinity of level sets of the components. One of the results obtained states that the Jacobian conjecture in ℂ² is true if the Jacobian condition ensures that the restriction of Q to the curve P = 0 has only one pole.},
author = {Nguyen Van Chau},
journal = {Annales Polonici Mathematici},
keywords = {Jacobian conjecture; polynomial automorphism; Newton-Puiseux expansion; Newton-Puiseux expansions},
language = {eng},
number = {3},
pages = {287-310},
title = {Non-zero constant Jacobian polynomial maps of $ℂ²$},
url = {http://eudml.org/doc/262821},
volume = {71},
year = {1999},
}

TY - JOUR
AU - Nguyen Van Chau
TI - Non-zero constant Jacobian polynomial maps of $ℂ²$
JO - Annales Polonici Mathematici
PY - 1999
VL - 71
IS - 3
SP - 287
EP - 310
AB - We study the behavior at infinity of non-zero constant Jacobian polynomial maps f = (P,Q) in ℂ² by analyzing the influence of the Jacobian condition on the structure of Newton-Puiseux expansions of branches at infinity of level sets of the components. One of the results obtained states that the Jacobian conjecture in ℂ² is true if the Jacobian condition ensures that the restriction of Q to the curve P = 0 has only one pole.
LA - eng
KW - Jacobian conjecture; polynomial automorphism; Newton-Puiseux expansion; Newton-Puiseux expansions
UR - http://eudml.org/doc/262821
ER -

References

top
  1. [A] S. S. Abhyankar, Expansion Techniques in Algebraic Geometry, Tata Inst. Fund. Research, 1977. Zbl0818.14001
  2. [AM] S. S. Abhyankar and T. T. Moh, Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 148-166. Zbl0332.14004
  3. [BCW] H. Bass, E. Connell and D. Wright, The Jacobian conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 287-330. Zbl0539.13012
  4. [BK] E. Brieskorn und H. Knörrer, Ebene algebraische Kurven, Birkhäuser, Basel, 1981. 
  5. [Ca] L. A. Campbell, Partial properness and the Jacobian conjecture, Appl. Math. Lett. 9 (1996), no. 2, 5-10. Zbl0858.14006
  6. [C1] Nguyen Van Chau, Remark on the Vitushkin covering, Acta Math. Vietnam. 24 (1999), 109-115. Zbl0951.14008
  7. [C2] Nguyen Van Chau, Newton-Puiseux expansion approach to the Jacobian conjecture, preprint 14/98, Math. Inst. Hanoi, 1998. 
  8. [CK] J. Chądzyński and T. Krasiński, On a formula for the geometric degree and Jung' theorem, Univ. Iagell. Acta Math. 28 (1991), 81-84. Zbl0757.14006
  9. [D1] L. M. Drużkowski, A geometric approach to the Jacobian Conjecture in ℂ², Ann. Polon. Math. 55 (1991), 95-101. 
  10. [D2] L. M. Drużkowski, The Jacobian Conjecture, preprint 492, Inst. Math., Polish Acad. Sci., Warszawa, 1991. 
  11. [H] R. C. Heitmann, On the Jacobian conjecture, J. Pure Appl. Algebra 64 (1990), 35-72. Zbl0704.13010
  12. [HL] H. V. Ha et D. T. Le, Sur la topologie des polynômes complexes, Acta Math. Vietnam. 9 (1984), 21-32 (1985). 
  13. [J] H. W. E. Jung, Über ganze birationale Transformationen der Ebene, J. Reine Angew. Math. 184 (1942), 161-174. Zbl0027.08503
  14. [Ka] S. Kaliman, On the Jacobian conjecture, Proc. Amer. Math. Soc. 117 (1993), 45-51. Zbl0782.13017
  15. [K] O. Keller, Ganze Cremona-Transformationen, Monatsh. Mat. Phys. 47 (1939), 299-306. 
  16. [Kul] W. van der Kulk, On polynomial rings in two variables, Nieuw Arch. Wisk. (3) 1 (1953), 33-41. Zbl0050.26002
  17. [LW] D. T. Le et C. Weber, Polynômes à fibrés rationnelles et conjecture jacobienne à 2 variables, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 581-584. 
  18. [MK] J. H. McKay and S. S.-S. Wang, An elementary proof of the automorphism theorem for the polynomial ring in two variables, J. Pure Appl. Algebra 52 (1988), 91-102. Zbl0656.13002
  19. [O1] S. Yu. Orevkov, On three-sheeted polynomial mappings of ℂ², Izv. Akad. Nauk SSSR 50 (1986), 1231-1240 (in Russian). 
  20. [O2] S. Yu. Orevkov, Mappings of Eisenbud-Neumann splice diagrams, lecture given at International Workshop on Affine Algebraic Geometry (Haifa, 1993). 
  21. [O3] S. Yu. Orevkov, Rudolph diagram and analytical realization of Vitushkin's covering, Mat. Zametki 60 (1996), 206-224, 319 (in Russian). 
  22. [P] S. Pinchuk, A counterexample to the strong real Jacobian Conjecture, Math. Z. 217 (1994), 1-4. Zbl0874.26008
  23. [St] Y. Stein, The Jacobian problem as a system of ordinary differential equations, Israel J. Math. 89 (1995), 301-319. Zbl0823.34010
  24. [Su] M. Suzuki, Propriétés topologiques des polynômes de deux variables complexes et automorphismes algébriques de l'espace ℂ², J. Math. Soc. Japan 26 (1974), 241-257. Zbl0276.14001
  25. [Ve] J. L. Verdier, Stratifications de Whitney et théorème de Bertini-Sard, Invent. Math. 36 (1976), 295-312. 
  26. [Vi] A. G. Vitushkin, On polynomial transformations of C n , in: Manifolds (Tokyo, 1973), Tokyo Univ. Press, 1975, 415-417. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.