Non-zero constant Jacobian polynomial maps of ²

Nguyen Van Chau

Annales Polonici Mathematici (1999)

  • Volume: 71, Issue: 3, page 287-310
  • ISSN: 0066-2216

Abstract

top
We study the behavior at infinity of non-zero constant Jacobian polynomial maps f = (P,Q) in ℂ² by analyzing the influence of the Jacobian condition on the structure of Newton-Puiseux expansions of branches at infinity of level sets of the components. One of the results obtained states that the Jacobian conjecture in ℂ² is true if the Jacobian condition ensures that the restriction of Q to the curve P = 0 has only one pole.

How to cite

top

Nguyen Van Chau. "Non-zero constant Jacobian polynomial maps of $ℂ²$." Annales Polonici Mathematici 71.3 (1999): 287-310. <http://eudml.org/doc/262821>.

@article{NguyenVanChau1999,
abstract = {We study the behavior at infinity of non-zero constant Jacobian polynomial maps f = (P,Q) in ℂ² by analyzing the influence of the Jacobian condition on the structure of Newton-Puiseux expansions of branches at infinity of level sets of the components. One of the results obtained states that the Jacobian conjecture in ℂ² is true if the Jacobian condition ensures that the restriction of Q to the curve P = 0 has only one pole.},
author = {Nguyen Van Chau},
journal = {Annales Polonici Mathematici},
keywords = {Jacobian conjecture; polynomial automorphism; Newton-Puiseux expansion; Newton-Puiseux expansions},
language = {eng},
number = {3},
pages = {287-310},
title = {Non-zero constant Jacobian polynomial maps of $ℂ²$},
url = {http://eudml.org/doc/262821},
volume = {71},
year = {1999},
}

TY - JOUR
AU - Nguyen Van Chau
TI - Non-zero constant Jacobian polynomial maps of $ℂ²$
JO - Annales Polonici Mathematici
PY - 1999
VL - 71
IS - 3
SP - 287
EP - 310
AB - We study the behavior at infinity of non-zero constant Jacobian polynomial maps f = (P,Q) in ℂ² by analyzing the influence of the Jacobian condition on the structure of Newton-Puiseux expansions of branches at infinity of level sets of the components. One of the results obtained states that the Jacobian conjecture in ℂ² is true if the Jacobian condition ensures that the restriction of Q to the curve P = 0 has only one pole.
LA - eng
KW - Jacobian conjecture; polynomial automorphism; Newton-Puiseux expansion; Newton-Puiseux expansions
UR - http://eudml.org/doc/262821
ER -

References

top
  1. [A] S. S. Abhyankar, Expansion Techniques in Algebraic Geometry, Tata Inst. Fund. Research, 1977. Zbl0818.14001
  2. [AM] S. S. Abhyankar and T. T. Moh, Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 148-166. Zbl0332.14004
  3. [BCW] H. Bass, E. Connell and D. Wright, The Jacobian conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 287-330. Zbl0539.13012
  4. [BK] E. Brieskorn und H. Knörrer, Ebene algebraische Kurven, Birkhäuser, Basel, 1981. 
  5. [Ca] L. A. Campbell, Partial properness and the Jacobian conjecture, Appl. Math. Lett. 9 (1996), no. 2, 5-10. Zbl0858.14006
  6. [C1] Nguyen Van Chau, Remark on the Vitushkin covering, Acta Math. Vietnam. 24 (1999), 109-115. Zbl0951.14008
  7. [C2] Nguyen Van Chau, Newton-Puiseux expansion approach to the Jacobian conjecture, preprint 14/98, Math. Inst. Hanoi, 1998. 
  8. [CK] J. Chądzyński and T. Krasiński, On a formula for the geometric degree and Jung' theorem, Univ. Iagell. Acta Math. 28 (1991), 81-84. Zbl0757.14006
  9. [D1] L. M. Drużkowski, A geometric approach to the Jacobian Conjecture in ℂ², Ann. Polon. Math. 55 (1991), 95-101. 
  10. [D2] L. M. Drużkowski, The Jacobian Conjecture, preprint 492, Inst. Math., Polish Acad. Sci., Warszawa, 1991. 
  11. [H] R. C. Heitmann, On the Jacobian conjecture, J. Pure Appl. Algebra 64 (1990), 35-72. Zbl0704.13010
  12. [HL] H. V. Ha et D. T. Le, Sur la topologie des polynômes complexes, Acta Math. Vietnam. 9 (1984), 21-32 (1985). 
  13. [J] H. W. E. Jung, Über ganze birationale Transformationen der Ebene, J. Reine Angew. Math. 184 (1942), 161-174. Zbl0027.08503
  14. [Ka] S. Kaliman, On the Jacobian conjecture, Proc. Amer. Math. Soc. 117 (1993), 45-51. Zbl0782.13017
  15. [K] O. Keller, Ganze Cremona-Transformationen, Monatsh. Mat. Phys. 47 (1939), 299-306. 
  16. [Kul] W. van der Kulk, On polynomial rings in two variables, Nieuw Arch. Wisk. (3) 1 (1953), 33-41. Zbl0050.26002
  17. [LW] D. T. Le et C. Weber, Polynômes à fibrés rationnelles et conjecture jacobienne à 2 variables, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 581-584. 
  18. [MK] J. H. McKay and S. S.-S. Wang, An elementary proof of the automorphism theorem for the polynomial ring in two variables, J. Pure Appl. Algebra 52 (1988), 91-102. Zbl0656.13002
  19. [O1] S. Yu. Orevkov, On three-sheeted polynomial mappings of ℂ², Izv. Akad. Nauk SSSR 50 (1986), 1231-1240 (in Russian). 
  20. [O2] S. Yu. Orevkov, Mappings of Eisenbud-Neumann splice diagrams, lecture given at International Workshop on Affine Algebraic Geometry (Haifa, 1993). 
  21. [O3] S. Yu. Orevkov, Rudolph diagram and analytical realization of Vitushkin's covering, Mat. Zametki 60 (1996), 206-224, 319 (in Russian). 
  22. [P] S. Pinchuk, A counterexample to the strong real Jacobian Conjecture, Math. Z. 217 (1994), 1-4. Zbl0874.26008
  23. [St] Y. Stein, The Jacobian problem as a system of ordinary differential equations, Israel J. Math. 89 (1995), 301-319. Zbl0823.34010
  24. [Su] M. Suzuki, Propriétés topologiques des polynômes de deux variables complexes et automorphismes algébriques de l'espace ℂ², J. Math. Soc. Japan 26 (1974), 241-257. Zbl0276.14001
  25. [Ve] J. L. Verdier, Stratifications de Whitney et théorème de Bertini-Sard, Invent. Math. 36 (1976), 295-312. 
  26. [Vi] A. G. Vitushkin, On polynomial transformations of C n , in: Manifolds (Tokyo, 1973), Tokyo Univ. Press, 1975, 415-417. 

NotesEmbed ?

top

You must be logged in to post comments.