Simultaneous unitarizability of SL-valued maps, and constant mean curvature k-noid monodromy
We give necessary and sufficient local conditions for the simultaneous unitarizability of a set of analytic matrix maps from an analytic 1-manifold into under conjugation by a single analytic matrix map.We apply this result to the monodromy arising from an integrable partial differential equation to construct a family of -noids, genus-zero constant mean curvature surfaces with three or more ends in euclidean, spherical and hyperbolic -spaces.