Simultaneous unitarizability of SL n -valued maps, and constant mean curvature k-noid monodromy

Wayne Rossman; Nicholas Schmitt

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2006)

  • Volume: 5, Issue: 4, page 549-577
  • ISSN: 0391-173X

Abstract

top
We give necessary and sufficient local conditions for the simultaneous unitarizability of a set of analytic matrix maps from an analytic 1-manifold into SL n under conjugation by a single analytic matrix map.We apply this result to the monodromy arising from an integrable partial differential equation to construct a family of k -noids, genus-zero constant mean curvature surfaces with three or more ends in euclidean, spherical and hyperbolic 3 -spaces.

How to cite

top

Rossman, Wayne, and Schmitt, Nicholas. "Simultaneous unitarizability of SL$_{\hbox{\textit {n}}}{\mathbb {C}}$-valued maps, and constant mean curvature k-noid monodromy." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 5.4 (2006): 549-577. <http://eudml.org/doc/242690>.

@article{Rossman2006,
abstract = {We give necessary and sufficient local conditions for the simultaneous unitarizability of a set of analytic matrix maps from an analytic 1-manifold into $\{\rm SL\}_\{n\}\{\mathbb \{C\}\}$ under conjugation by a single analytic matrix map.We apply this result to the monodromy arising from an integrable partial differential equation to construct a family of $k$-noids, genus-zero constant mean curvature surfaces with three or more ends in euclidean, spherical and hyperbolic $3$-spaces.},
author = {Rossman, Wayne, Schmitt, Nicholas},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {549-577},
publisher = {Scuola Normale Superiore, Pisa},
title = {Simultaneous unitarizability of SL$_\{\hbox\{\textit \{n\}\}\}\{\mathbb \{C\}\}$-valued maps, and constant mean curvature k-noid monodromy},
url = {http://eudml.org/doc/242690},
volume = {5},
year = {2006},
}

TY - JOUR
AU - Rossman, Wayne
AU - Schmitt, Nicholas
TI - Simultaneous unitarizability of SL$_{\hbox{\textit {n}}}{\mathbb {C}}$-valued maps, and constant mean curvature k-noid monodromy
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2006
PB - Scuola Normale Superiore, Pisa
VL - 5
IS - 4
SP - 549
EP - 577
AB - We give necessary and sufficient local conditions for the simultaneous unitarizability of a set of analytic matrix maps from an analytic 1-manifold into ${\rm SL}_{n}{\mathbb {C}}$ under conjugation by a single analytic matrix map.We apply this result to the monodromy arising from an integrable partial differential equation to construct a family of $k$-noids, genus-zero constant mean curvature surfaces with three or more ends in euclidean, spherical and hyperbolic $3$-spaces.
LA - eng
UR - http://eudml.org/doc/242690
ER -

References

top
  1. [1] I. Biswas, On the existence of unitary flat connections over the punctured sphere with given local monodromy around the punctures, Asian J. Math 3 (1999), 333–344. Zbl0982.14022MR1796505
  2. [2] A. I. Bobenko, Constant mean curvature surfaces and integrable equations, Russian Math. Surveys 46 (1991), 1–45. Zbl0780.53009MR1138951
  3. [3] J. Dorfmeister and G. Haak, Construction of non-simply connected CMC surfaces via dressing, J. Math. Soc. Japan 55 (2003), 335–364. Zbl1035.53015MR1961290
  4. [4] J. Dorfmeister, F. Pedit, and H. Wu, Weierstrass type representation of harmonic maps into symmetric spaces, Comm. Anal. Geom. 6 (1998), 633–668. Zbl0932.58018MR1664887
  5. [5] J. Dorfmeister and H. Wu, Construction of constant mean curvature trinoids from holomorphic potentials, preprint, 2000. Zbl1151.53055
  6. [6] J. Dorfmeister and H. WuUnitarization of loop group representations of fundamental groups, preprint, 2005. Zbl1135.22020MR2354553
  7. [7] W. M. Goldman, Topological components of spaces of representations, Invent. Math. 93 (1988), 557–607. Zbl0655.57019MR952283
  8. [8] K. Große-Brauckmann, New surfaces of constant mean curvature, Math. Z. 214 (1993), 527–565. Zbl0806.53005MR1248112
  9. [9] K. Große-Brauckmann, R. Kusner and J. M. Sullivan, Triunduloids: embedded constant mean curvature surfaces with three ends and genus zero, J. Reine Angew. Math. 564 (2003), 35–61. Zbl1058.53005MR2021033
  10. [10] K. Große-Brauckmann, R. Kusner and J. M. Sullivan, Coplanar constant mean curvature surfaces, math.DG/0509210, 2005. Zbl1145.53002
  11. [11] N. Kapouleas, Complete constant mean curvature surfaces in Euclidean three space, Ann. of Math. 131 (1990), 239–330. Zbl0699.53007MR1043269
  12. [12] M. Kilian, W. Rossman and N. Schmitt, Delaunay ends of constant mean curvature surfaces, preprint, 2006. Zbl1144.53015MR2388561
  13. [13] M. Kilian, N. Schmitt and I. Sterling, Dressing CMC n-noids, Math. Z. 246 (2004), 501–519. Zbl1065.53010MR2073454
  14. [14] N. Korevaar, R. Kusner, W. Meeks III and B. Solomon, Constant mean curvature surfaces in hyperbolic space, Amer. J. Math. 114 (1992), 1–43. Zbl0757.53032MR1147718
  15. [15] N. Korevaar, R. Kusner and B. Solomon, The structure of complete embedded surfaces with constant mean curvature, J. Differential Geom. 30 (1989), no. 2, 465–503. Zbl0726.53007MR1010168
  16. [16] R. Mazzeo and F. Pacard, Constant mean curvature surfaces with Delaunay ends, Comm. Anal. Geom. 9 (2001), 169–237. Zbl1005.53006MR1807955
  17. [17] I. McIntosh, Global solutions of the elliptic 2d periodic Toda lattice, Nonlinearity 7 (1994), 85–108. Zbl0840.58023MR1260134
  18. [18] A. Pressley and G. Segal, “Loop Groups”, Oxford Science Monographs, Oxford Science Publications, 1988. Zbl0638.22009
  19. [19] J. Ratzkin, An end to end gluing construction for metrics of constant positive scalar curvature, Indiana Univ. Math. J. 52 (2003), 703–726. Zbl1032.53028MR1986894
  20. [20] N. Schmitt, CMCLab, http://www.gang.umass.edu/software. 
  21. [21] N. Schmitt, Constant mean curvature n -noids with symmetries, preprint, 2006. 
  22. [22] N. Schmitt, M. Kilian, S. Kobayashi and W. Rossman, Unitarization of monodromy representations and constant mean curvature trinoids in 3-dimensional space forms, J. London Math. Society, to appear. Zbl1144.53017
  23. [23] M. Umehara and K. Yamada, Metrics of constant curvature 1 with three conical singularities on the 2-sphere, Illinois. J. Math. 44 (2000), 72–94. Zbl0958.30029MR1731382

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.