Simultaneous unitarizability of SL-valued maps, and constant mean curvature k-noid monodromy
Wayne Rossman; Nicholas Schmitt
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2006)
- Volume: 5, Issue: 4, page 549-577
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topRossman, Wayne, and Schmitt, Nicholas. "Simultaneous unitarizability of SL$_{\hbox{\textit {n}}}{\mathbb {C}}$-valued maps, and constant mean curvature k-noid monodromy." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 5.4 (2006): 549-577. <http://eudml.org/doc/242690>.
@article{Rossman2006,
abstract = {We give necessary and sufficient local conditions for the simultaneous unitarizability of a set of analytic matrix maps from an analytic 1-manifold into $\{\rm SL\}_\{n\}\{\mathbb \{C\}\}$ under conjugation by a single analytic matrix map.We apply this result to the monodromy arising from an integrable partial differential equation to construct a family of $k$-noids, genus-zero constant mean curvature surfaces with three or more ends in euclidean, spherical and hyperbolic $3$-spaces.},
author = {Rossman, Wayne, Schmitt, Nicholas},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {549-577},
publisher = {Scuola Normale Superiore, Pisa},
title = {Simultaneous unitarizability of SL$_\{\hbox\{\textit \{n\}\}\}\{\mathbb \{C\}\}$-valued maps, and constant mean curvature k-noid monodromy},
url = {http://eudml.org/doc/242690},
volume = {5},
year = {2006},
}
TY - JOUR
AU - Rossman, Wayne
AU - Schmitt, Nicholas
TI - Simultaneous unitarizability of SL$_{\hbox{\textit {n}}}{\mathbb {C}}$-valued maps, and constant mean curvature k-noid monodromy
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2006
PB - Scuola Normale Superiore, Pisa
VL - 5
IS - 4
SP - 549
EP - 577
AB - We give necessary and sufficient local conditions for the simultaneous unitarizability of a set of analytic matrix maps from an analytic 1-manifold into ${\rm SL}_{n}{\mathbb {C}}$ under conjugation by a single analytic matrix map.We apply this result to the monodromy arising from an integrable partial differential equation to construct a family of $k$-noids, genus-zero constant mean curvature surfaces with three or more ends in euclidean, spherical and hyperbolic $3$-spaces.
LA - eng
UR - http://eudml.org/doc/242690
ER -
References
top- [1] I. Biswas, On the existence of unitary flat connections over the punctured sphere with given local monodromy around the punctures, Asian J. Math 3 (1999), 333–344. Zbl0982.14022MR1796505
- [2] A. I. Bobenko, Constant mean curvature surfaces and integrable equations, Russian Math. Surveys 46 (1991), 1–45. Zbl0780.53009MR1138951
- [3] J. Dorfmeister and G. Haak, Construction of non-simply connected CMC surfaces via dressing, J. Math. Soc. Japan 55 (2003), 335–364. Zbl1035.53015MR1961290
- [4] J. Dorfmeister, F. Pedit, and H. Wu, Weierstrass type representation of harmonic maps into symmetric spaces, Comm. Anal. Geom. 6 (1998), 633–668. Zbl0932.58018MR1664887
- [5] J. Dorfmeister and H. Wu, Construction of constant mean curvature trinoids from holomorphic potentials, preprint, 2000. Zbl1151.53055
- [6] J. Dorfmeister and H. WuUnitarization of loop group representations of fundamental groups, preprint, 2005. Zbl1135.22020MR2354553
- [7] W. M. Goldman, Topological components of spaces of representations, Invent. Math. 93 (1988), 557–607. Zbl0655.57019MR952283
- [8] K. Große-Brauckmann, New surfaces of constant mean curvature, Math. Z. 214 (1993), 527–565. Zbl0806.53005MR1248112
- [9] K. Große-Brauckmann, R. Kusner and J. M. Sullivan, Triunduloids: embedded constant mean curvature surfaces with three ends and genus zero, J. Reine Angew. Math. 564 (2003), 35–61. Zbl1058.53005MR2021033
- [10] K. Große-Brauckmann, R. Kusner and J. M. Sullivan, Coplanar constant mean curvature surfaces, math.DG/0509210, 2005. Zbl1145.53002
- [11] N. Kapouleas, Complete constant mean curvature surfaces in Euclidean three space, Ann. of Math. 131 (1990), 239–330. Zbl0699.53007MR1043269
- [12] M. Kilian, W. Rossman and N. Schmitt, Delaunay ends of constant mean curvature surfaces, preprint, 2006. Zbl1144.53015MR2388561
- [13] M. Kilian, N. Schmitt and I. Sterling, Dressing CMC n-noids, Math. Z. 246 (2004), 501–519. Zbl1065.53010MR2073454
- [14] N. Korevaar, R. Kusner, W. Meeks III and B. Solomon, Constant mean curvature surfaces in hyperbolic space, Amer. J. Math. 114 (1992), 1–43. Zbl0757.53032MR1147718
- [15] N. Korevaar, R. Kusner and B. Solomon, The structure of complete embedded surfaces with constant mean curvature, J. Differential Geom. 30 (1989), no. 2, 465–503. Zbl0726.53007MR1010168
- [16] R. Mazzeo and F. Pacard, Constant mean curvature surfaces with Delaunay ends, Comm. Anal. Geom. 9 (2001), 169–237. Zbl1005.53006MR1807955
- [17] I. McIntosh, Global solutions of the elliptic 2d periodic Toda lattice, Nonlinearity 7 (1994), 85–108. Zbl0840.58023MR1260134
- [18] A. Pressley and G. Segal, “Loop Groups”, Oxford Science Monographs, Oxford Science Publications, 1988. Zbl0638.22009
- [19] J. Ratzkin, An end to end gluing construction for metrics of constant positive scalar curvature, Indiana Univ. Math. J. 52 (2003), 703–726. Zbl1032.53028MR1986894
- [20] N. Schmitt, CMCLab, http://www.gang.umass.edu/software.
- [21] N. Schmitt, Constant mean curvature -noids with symmetries, preprint, 2006.
- [22] N. Schmitt, M. Kilian, S. Kobayashi and W. Rossman, Unitarization of monodromy representations and constant mean curvature trinoids in 3-dimensional space forms, J. London Math. Society, to appear. Zbl1144.53017
- [23] M. Umehara and K. Yamada, Metrics of constant curvature 1 with three conical singularities on the 2-sphere, Illinois. J. Math. 44 (2000), 72–94. Zbl0958.30029MR1731382
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.