The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Poincaré bundles for projective surfaces

Nicole Mestrano — 1985

Annales de l'institut Fourier

Let X be a smooth projective surface, K the canonical divisor, H a very ample divisor and M H ( c 1 , c 2 ) the moduli space of rank-two vector bundles, H -stable with Chern classes c 1 and c 2 . We prove that, if there exists c 1 ' such that c 1 is numerically equivalent to 2 c 1 ' and if c 2 - 1 4 c 1 2 is even, greater or equal to H 2 + H K + 4 , then there is no Poincaré bundle on M H ( c 1 , c 2 ) × X . Conversely, if there exists c 1 ' such that the number c 1 ' · c 1 is odd or if 1 2 c 1 2 - 1 2 c 1 · K - c 2 is odd, then there exists a Poincaré bundle on M H ( c 1 , c 2 ) × X .

Page 1

Download Results (CSV)