Generalized Lebesgue points for Sobolev functions
In many recent articles, medians have been used as a replacement of integral averages when the function fails to be locally integrable. A point in a metric measure space is called a generalized Lebesgue point of a measurable function if the medians of over the balls converge to when converges to . We know that almost every point of a measurable, almost everywhere finite function is a generalized Lebesgue point and the same is true for every point of a continuous function. We show...