Generalized Lebesgue points for Sobolev functions
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 1, page 143-150
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKarak, Nijjwal. "Generalized Lebesgue points for Sobolev functions." Czechoslovak Mathematical Journal 67.1 (2017): 143-150. <http://eudml.org/doc/287898>.
@article{Karak2017,
abstract = {In many recent articles, medians have been used as a replacement of integral averages when the function fails to be locally integrable. A point $x$ in a metric measure space $(X,d,\mu )$ is called a generalized Lebesgue point of a measurable function $f$ if the medians of $f$ over the balls $B(x,r)$ converge to $f(x)$ when $r$ converges to $0$. We know that almost every point of a measurable, almost everywhere finite function is a generalized Lebesgue point and the same is true for every point of a continuous function. We show that a function $f\in M^\{s,p\}(X)$, $0<s\le 1$, $0<p<1$, where $X$ is a doubling metric measure space, has generalized Lebesgue points outside a set of $\mathcal \{H\}^h$-Hausdorff measure zero for a suitable gauge function $h$.},
author = {Karak, Nijjwal},
journal = {Czechoslovak Mathematical Journal},
keywords = {Sobolev space; metric measure space; median; generalized Lebesgue point},
language = {eng},
number = {1},
pages = {143-150},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Generalized Lebesgue points for Sobolev functions},
url = {http://eudml.org/doc/287898},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Karak, Nijjwal
TI - Generalized Lebesgue points for Sobolev functions
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 1
SP - 143
EP - 150
AB - In many recent articles, medians have been used as a replacement of integral averages when the function fails to be locally integrable. A point $x$ in a metric measure space $(X,d,\mu )$ is called a generalized Lebesgue point of a measurable function $f$ if the medians of $f$ over the balls $B(x,r)$ converge to $f(x)$ when $r$ converges to $0$. We know that almost every point of a measurable, almost everywhere finite function is a generalized Lebesgue point and the same is true for every point of a continuous function. We show that a function $f\in M^{s,p}(X)$, $0<s\le 1$, $0<p<1$, where $X$ is a doubling metric measure space, has generalized Lebesgue points outside a set of $\mathcal {H}^h$-Hausdorff measure zero for a suitable gauge function $h$.
LA - eng
KW - Sobolev space; metric measure space; median; generalized Lebesgue point
UR - http://eudml.org/doc/287898
ER -
References
top- Adams, D. R., Hedberg, L. I., 10.1007/978-3-662-03282-4, Grundlehren der Mathematischen Wissenschaften 314, Springer, Berlin (1996). (1996) Zbl0834.46021MR1411441DOI10.1007/978-3-662-03282-4
- Björn, J., Onninen, J., 10.1007/s00209-005-0792-y, Math. Z. 251 (2005), 131-146. (2005) Zbl1084.31004MR2176468DOI10.1007/s00209-005-0792-y
- Costea, Ş., 10.5565/PUBLMAT_53109_07, Publ. Mat. 53 (2009), 141-178. (2009) Zbl1171.46025MR2474119DOI10.5565/PUBLMAT_53109_07
- Evans, L. C., Gariepy, R. F., Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton (1992). (1992) Zbl0804.28001MR1158660
- Federer, H., 10.1007/978-3-642-62010-2, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 153, Springer, New York (1969). (1969) Zbl0874.49001MR0257325DOI10.1007/978-3-642-62010-2
- Federer, H., Ziemer, W. P., 10.1512/iumj.1972.22.22013, Math. J., Indiana Univ. 22 (1972), 139-158. (1972) Zbl0238.28015MR0435361DOI10.1512/iumj.1972.22.22013
- Fujii, N., 10.4064/sm-98-3-175-190, Stud. Math. 98 (1991), 175-190. (1991) Zbl0732.42012MR1115188DOI10.4064/sm-98-3-175-190
- Hajłasz, P., 10.1007/BF00275475, Potential Anal. 5 (1996), 403-415. (1996) Zbl0859.46022MR1401074DOI10.1007/BF00275475
- Hajłasz, P., Kinnunen, J., 10.4171/RMI/246, Rev. Mat. Iberoam. 14 (1998), 601-622. (1998) Zbl1155.46306MR1681586DOI10.4171/RMI/246
- Hajłasz, P., Koskela, P., 10.1090/memo/0688, Mem. Am. Math. Soc. 145 (2000), 1-101. (2000) Zbl0954.46022MR1683160DOI10.1090/memo/0688
- Hedberg, L. I., Netrusov, Y., 2326315, Mem. Am. Math. Soc. 188 (2007), 1-97. (2007) Zbl1186.46028MR2326315DOI2326315
- Heikkinen, T., Koskela, P., Tuominen, H., Approximation and quasicontinuity of Besov and Triebel-Lizorkin functions, To appear in Trans Am. Math. Soc. MR3605979
- Heinonen, J., Kilpeläinen, T., Martio, O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Dover Publications, Mineola (2006). (2006) Zbl1115.31001MR2305115
- Karak, N., Koskela, P., 10.1007/s13163-015-0174-x, Rev. Mat. Complut. 28 (2015), 733-740. (2015) Zbl1325.31004MR3379045DOI10.1007/s13163-015-0174-x
- Karak, N., Koskela, P., 10.1007/s11425-015-5001-9, Sci. China Math. 58 (2015), 1697-1706. (2015) Zbl06485640MR3368175DOI10.1007/s11425-015-5001-9
- Kinnunen, J., Korte, R., Shanmugalingam, N., Tuominen, H., 10.1512/iumj.2008.57.3168, Indiana Univ. Math. J. 57 (2008), 401-430. (2008) Zbl1146.46018MR2400262DOI10.1512/iumj.2008.57.3168
- Kinnunen, J., Latvala, V., 10.4171/RMI/332, Rev. Mat. Iberoam. 18 (2002), 685-700. (2002) Zbl1037.46031MR1954868DOI10.4171/RMI/332
- Koskela, P., Saksman, E., 10.4310/MRL.2008.v15.n4.a11, Math. Res. Lett. 15 (2008), 727-744. (2008) Zbl1165.46013MR2424909DOI10.4310/MRL.2008.v15.n4.a11
- Koskela, P., Yang, D., Zhou, Y., 2764899, Adv. Math. 226 (2011), 3579-3621. (2011) Zbl1217.46019MR2764899DOI2764899
- Maz'ya, V. G., Khavin, V. P., 10.1070/rm1972v027n06ABEH001393, Russ. Math. Surv. 27 (1972), 71-148. (1972) Zbl0269.31004DOI10.1070/rm1972v027n06ABEH001393
- Netrusov, Yu. V., Sets of singularities of functions in spaces of Besov and Lizorkin-Triebel type, Proc. Steklov Inst. Math. 187 (1990), 185-203 187 1989 162-177 Translation from Tr. Mat. Inst. Steklova. (1990) Zbl0719.46018MR1006450
- Orobitg, J., 10.1007/BFb0086804, Harmonic Analysis and Partial Differential Equations Proc. Int. Conf., El Escorial, 1987, Lect. Notes Math. 1384, Springer, Berlin (1989), 202-206. (1989) Zbl0699.46018MR1013826DOI10.1007/BFb0086804
- Poelhuis, J., Torchinsky, A., 10.4064/sm213-3-3, Stud. Math. 213 (2012), 227-242. (2012) Zbl1277.42024MR3024312DOI10.4064/sm213-3-3
- Shanmugalingam, N., 10.4171/RMI/275, Rev. Mat. Iberoam. 16 (2000), 243-279. (2000) Zbl0974.46038MR1809341DOI10.4171/RMI/275
- Strömberg, J.-O., 10.1512/iumj.1979.28.28037, Indiana Univ. Math. J. 28 (1979), 511-544. (1979) Zbl0429.46016MR529683DOI10.1512/iumj.1979.28.28037
- Yang, D., 10.1360/02ys0343, Sci. China, Ser. A 46 (2003), 675-689. (2003) Zbl1092.46026MR2025934DOI10.1360/02ys0343
- Ziemer, W. P., 10.1007/978-1-4612-1015-3, Graduate Texts in Mathematics 120, Springer, New York (1989). (1989) Zbl0692.46022MR1014685DOI10.1007/978-1-4612-1015-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.