The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

The proof of the Nirenberg-Treves conjecture

Nils Dencker — 2003

Journées équations aux dérivées partielles

We prove the Nirenberg-Treves conjecture : that for principal type pseudo-differential operators local solvability is equivalent to condition ( Ψ ). This condition rules out certain sign changes of the imaginary part of the principal symbol along the bicharacteristics of the real part. We obtain local solvability by proving a localizable estimate for the adjoint operator with a loss of two derivatives (compared with the elliptic case). The proof involves a new metric in the Weyl (or Beals-Fefferman)...

Preparation theorems for matrix valued functions

Nils Dencker — 1993

Annales de l'institut Fourier

We generalize the Malgrange preparation theorem to matrix valued functions F ( t , x ) C ( R × R n ) satisfying the condition that t det F ( t , 0 ) vanishes to finite order at t = 0 . Then we can factor F ( t , x ) = C ( t , x ) P ( t , x ) near (0,0), where C ( t , x ) C is inversible and P ( t , x ) is polynomial function of t depending C on x . The preparation is (essentially) unique, up to functions vanishing to infinite order at x = 0 , if we impose some additional conditions on P ( t , x ) . We also have a generalization of the division theorem, and analytic versions generalizing the Weierstrass preparation...

Page 1

Download Results (CSV)