The propagation of polarization in double refraction

Nils Dencker

Journées équations aux dérivées partielles (1988)

  • page 1-9
  • ISSN: 0752-0360

How to cite

top

Dencker, Nils. "The propagation of polarization in double refraction." Journées équations aux dérivées partielles (1988): 1-9. <http://eudml.org/doc/93179>.

@article{Dencker1988,
author = {Dencker, Nils},
journal = {Journées équations aux dérivées partielles},
keywords = {propagation of polarization; double refraction for uniaxial crystals},
language = {eng},
pages = {1-9},
publisher = {Ecole polytechnique},
title = {The propagation of polarization in double refraction},
url = {http://eudml.org/doc/93179},
year = {1988},
}

TY - JOUR
AU - Dencker, Nils
TI - The propagation of polarization in double refraction
JO - Journées équations aux dérivées partielles
PY - 1988
PB - Ecole polytechnique
SP - 1
EP - 9
LA - eng
KW - propagation of polarization; double refraction for uniaxial crystals
UR - http://eudml.org/doc/93179
ER -

References

top
  1. 1. J. Chazarain, Propagation des singularités pour une classe d'opérateurs à caractéristiques multiples et résolubilité locale, Ann. Inst. Fourier (Grenoble) 24 (1974), 203-223. Zbl0274.35007MR52 #11338b
  2. 2. N. Dencker, On the propagation of polarization sets for systems of real principal type, J. Funct. Anal. 46 (1982), 351-372. Zbl0487.58028MR84c:58081
  3. 3. N. Dencker, On the propagation of polarization in conical refraction, Duke Math. J. (to appear). Zbl0669.35116
  4. 4. N. Dencker, The propagation of singularities for pseudo-differential operators with self-tangential characteristics, Arkiv för Matematik (to appear). Zbl0682.35110
  5. 5. C. Gerard, Réflexion du front d'onde polarisé des solutions de systèmes d'equations aux dérivées partielles, C. R. Acad. Sci Paris 297 (1983), 409-412. Zbl0555.35012MR85h:35008
  6. 6. L. Hörmander, The Weyl calculus of pseudo-differential operators, Comm. Pure Appl. Math. 32 (1979), 359-443. Zbl0388.47032
  7. 7. L. Hörmander, “The Analysis of Linear Partial Differential Operators I-IV,” Springer Verlag, Berlin, 1985. Zbl0601.35001
  8. 8. R. B. Melrose and G. A. Uhlmann, Microlocal structure of involutive conical refraction, Duke Math. J. 46 (1979), 571-582. Zbl0422.58026MR81b:58044

NotesEmbed ?

top

You must be logged in to post comments.