The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We describe a relation between the invariants of ordered points in projective -space and of points contained in a union of two linear subspaces. This yields an attaching map for GIT quotients parameterizing point configurations in these spaces, and we show that it respects the Segre product of the natural GIT polarizations. Associated to a configuration supported on a rational normal curve is a cyclic cover, and we show that if the branch points are weighted by the GIT linearization and the rational...
Given an integral scheme over a non-archimedean valued field , we construct a universal closed embedding of into a -scheme equipped with a model over the field with one element (a generalization of a toric variety). An embedding into such an ambient space determines a tropicalization of by previous work of the authors, and we show that the set-theoretic tropicalization of with respect to this universal embedding is the Berkovich analytification . Moreover, using the scheme-theoretic...
Download Results (CSV)