The universal tropicalization and the Berkovich analytification
Jeffrey Giansiracusa; Noah Giansiracusa
Kybernetika (2022)
- Volume: 58, Issue: 5, page 790-815
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topGiansiracusa, Jeffrey, and Giansiracusa, Noah. "The universal tropicalization and the Berkovich analytification." Kybernetika 58.5 (2022): 790-815. <http://eudml.org/doc/299458>.
@article{Giansiracusa2022,
abstract = {Given an integral scheme $X$ over a non-archimedean valued field $k$, we construct a universal closed embedding of $X$ into a $k$-scheme equipped with a model over the field with one element $\mathbb \{F\}_1$ (a generalization of a toric variety). An embedding into such an ambient space determines a tropicalization of $X$ by previous work of the authors, and we show that the set-theoretic tropicalization of $X$ with respect to this universal embedding is the Berkovich analytification $X^\{\mathrm \{an\}\}$. Moreover, using the scheme-theoretic tropicalization we previously introduced, we obtain a tropical scheme $\mathit \{Trop\}_\{univ\}(X)$ whose $\mathbb \{T\}$-points give the analytification and that canonically maps to all other scheme-theoretic tropicalizations of $X$. This makes precise the idea that the Berkovich analytification is the universal tropicalization. When $X=\mathrm \{Spec\}\: A$ is affine, we show that $\mathit \{Trop\}_\{univ\}(X)$ is the limit of the tropicalizations of $X$ with respect to all embeddings in affine space, thus giving a scheme-theoretic enrichment of a well-known result of Payne. Finally, we show that $\mathit \{Trop\}_\{univ\}(X)$ represents the moduli functor of semivaluations on $X$, and when $X=\mathrm \{Spec\}\: A$ is affine there is a universal semivaluation on $A$ taking values in the idempotent semiring of regular functions on the universal tropicalization.},
author = {Giansiracusa, Jeffrey, Giansiracusa, Noah},
journal = {Kybernetika},
keywords = {tropical geometry; tropical schemes; idempotent semirings; Berkovich analytification; semivaluation},
language = {eng},
number = {5},
pages = {790-815},
publisher = {Institute of Information Theory and Automation AS CR},
title = {The universal tropicalization and the Berkovich analytification},
url = {http://eudml.org/doc/299458},
volume = {58},
year = {2022},
}
TY - JOUR
AU - Giansiracusa, Jeffrey
AU - Giansiracusa, Noah
TI - The universal tropicalization and the Berkovich analytification
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 5
SP - 790
EP - 815
AB - Given an integral scheme $X$ over a non-archimedean valued field $k$, we construct a universal closed embedding of $X$ into a $k$-scheme equipped with a model over the field with one element $\mathbb {F}_1$ (a generalization of a toric variety). An embedding into such an ambient space determines a tropicalization of $X$ by previous work of the authors, and we show that the set-theoretic tropicalization of $X$ with respect to this universal embedding is the Berkovich analytification $X^{\mathrm {an}}$. Moreover, using the scheme-theoretic tropicalization we previously introduced, we obtain a tropical scheme $\mathit {Trop}_{univ}(X)$ whose $\mathbb {T}$-points give the analytification and that canonically maps to all other scheme-theoretic tropicalizations of $X$. This makes precise the idea that the Berkovich analytification is the universal tropicalization. When $X=\mathrm {Spec}\: A$ is affine, we show that $\mathit {Trop}_{univ}(X)$ is the limit of the tropicalizations of $X$ with respect to all embeddings in affine space, thus giving a scheme-theoretic enrichment of a well-known result of Payne. Finally, we show that $\mathit {Trop}_{univ}(X)$ represents the moduli functor of semivaluations on $X$, and when $X=\mathrm {Spec}\: A$ is affine there is a universal semivaluation on $A$ taking values in the idempotent semiring of regular functions on the universal tropicalization.
LA - eng
KW - tropical geometry; tropical schemes; idempotent semirings; Berkovich analytification; semivaluation
UR - http://eudml.org/doc/299458
ER -
References
top- Banerjee, S., , J. Reine Angew. Math. 2015 (2013), 71-87. DOI
- Berkovich, V. G., Spectral theory and analytic geometry over non-Archimedean fields., Mathematical Surveys and Monographs, American Mathematical Society 33, Providence 1990.
- Berkovich, V. G., , Invent. Math. 137 (1999), 1, 1-84. DOI
- Berkovich, V. G., , In: Geometric aspects of Dwork theory. (Vol. I, II.), Walter de Gruyter, Berlin 2004, pp. 293-370. DOI
- Deitmar, A., Schemes over ., In: Number fields and function fields-two parallel worlds, Progr. Math. 239, Birkhäuser Boston, Boston, 2005, pp. 87-100.
- Deitmar, A., -schemes and toric varieties., Beiträge Algebra Geom. 49 (2008), 2, 517-525.
- Durov, N., New approach to arakelov geometry., arXiv:0704.2030, 2007.
- Einsiedler, M., Kapranov, M., Lind, D., Non-Archimedean amoebas and tropical varieties., J. Reine Angew. Math. 601 (2006), 139-157.
- Foster, T., Gross, P., Payne, S., , Israel J. Math. 201 (2014), 2, 835-846. DOI
- Foster, T., Ranganathan, D., , Manuscr. Math. 151 (2016), 3-4, 353-374. DOI
- Giansiracusa, J., Giansiracusa, N., 10.1215/00127094-3645544, Duke Math. J. 165 (2016), 18, 3379-3433. DOI10.1215/00127094-3645544
- Gubler, W., Rabinoff, J., Werner, A., Skeletons and tropicalizations., arXiv:1404.7044, 2014.
- Hrushovski, E., Loeser, F., Non-archimedean tame topology and stably dominated types., Ann. Math. Studies 192, Princeton University Press, Princeton 2016.
- Huber, R., Étale cohomology of rigid analytic varieties and adic spaces., Aspects of Mathematics E30, Friedr. Vieweg and Sohn, Braunschweig 1996.
- Jun, J., Mincheva, K., Tolliver, J., Vector bundles on tropical schemes., arXiv:2009.03030, 2020.
- Kajiwara, T., Tropical toric geometry., In: Contemp. Math., Toric topology 460, Amer. Math. Soc., Providence 2008, pp. 197-207.
- Kato, K., 10.2307/2374941, Amer. J. Math. 116 (1994), 5, 1073-1099. DOI10.2307/2374941
- Kontsevich, M., Soibelman, Y., , In: Progr. Math., The Unity Math. 244, Birkhäuser Boston, Boston 2006. pp. 321-385. DOI
- Kontsevich, M., Tschinkel, Y., Non-archimedean kähler geometry.
- Kuronya, A., Souza, P., Ulirsch, M., Tropicalization of toric prevarieties., arXiv:2107.03139, 2021.
- Maclagan, D., Rincón, F., , Compos. Math. 154 (2018), 3, 640-670. DOI
- Maclagan, D., Rincón, F., , J. Eur. Math. Soc. (JEMS) 22 (2020), 3, 777-796. DOI
- Maclagan, D., Rincón, F., Varieties of tropical ideals are balanced., arXiv:2009.14557, 2020.
- Maclagan, D., Sturmfels, B., Introduction to tropical geometry., American Mathematical Society, Graduate Studies in Mathematics 161, Providence 2015.
- Macpherson, A. W., Skeleta in non-Archimedean and tropical geometry., arXiv:1311.0502, 2013.
- Mikhalkin, G., Tropical Geometry., Unfinish draft book.
- Mikhalkin, G., Tropical geometry and its applications., In: International Congress of Mathematicians II, Eur. Math. Soc., Zürich 2006, pp. 827-852. Zbl1103.14034
- Mustata, M., Nicaise, J., Weight functions on non-Archimedean analytic spaces and the Kontsevich-Soibelman skeleton., arXiv:1212.6328, 2013.
- Payne, S., , Math. Res. Lett. 16 (2009), 3, 543-556. DOI
- Payne, S., , Math. Z. 262 (2009), 2, 301-311. DOI
- Popescu-Pampu, P., Stepanov, D., , In: Algebraic and combinatorial aspects of tropical geometry, Contemp. Math. 589, Amer. Math. Soc., Providence 2013, pp. 253-316. DOI
- Richter-Gebert, J., Sturmfels, B., Theobald, T., 10.1090/conm/377/06998, In: Idempotent mathematics and mathematical physics, Contemp. Math. 377, Amer. Math. Soc., Providence 2005, pp. 289-317. Zbl1093.14080DOI10.1090/conm/377/06998
- Temkin, M., , Israel J. Math. 185 (2011), 1-42. DOI
- Thuillier, A., Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. applications à la théorie d'arakelov, 2005.
- Toën, B., Vaquié, M., , J. K-Theory 3 (2009), 3, 437-500. DOI
- Ulirsch, M., , Proc. Lond. Math. Soc. 3 114 (2017), 6, 1081-1113. DOI
- Ulirsch, M., , Adv. Math. 345 (2019), 346-381. DOI
- Włodarczyk, J., Embeddings in toric varieties and prevarieties., J. Algebraic Geom. 2 (1993), 4, 705-726.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.