The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Generators and integer points on the elliptic curve y² = x³ - nx

Yasutsugu FujitaNobuhiro Terai — 2013

Acta Arithmetica

Let E be an elliptic curve over the rationals ℚ given by y² = x³ - nx with a positive integer n. We consider first the case where n = N² for a square-free integer N. Then we show that if the Mordell-Weil group E(ℚ ) has rank one, there exist at most 17 integer points on E. Moreover, we show that for some parameterized N a certain point P can be in a system of generators for E(ℚ ), and we determine the integer points in the group generated by the point P and the torsion points. Secondly, we consider...

Generators for the elliptic curve y 2 = x 3 - n x

Yasutsugu FujitaNobuhiro Terai — 2011

Journal de Théorie des Nombres de Bordeaux

Let E be an elliptic curve given by y 2 = x 3 - n x with a positive integer n . Duquesne in 2007 showed that if n = ( 2 k 2 - 2 k + 1 ) ( 18 k 2 + 30 k + 17 ) is square-free with an integer k , then certain two rational points of infinite order can always be in a system of generators for the Mordell-Weil group of E . In this paper, we generalize this result and show that the same is true for infinitely many binary forms n = n ( k , l ) in [ k , l ] .

Page 1

Download Results (CSV)