Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Polynomials over Q solving an embedding problem

Nuria Vila — 1985

Annales de l'institut Fourier

The fields defined by the polynomials constructed in E. Nart and the author in J. Number Theory 16, (1983), 6–13, Th. 2.1, with absolute Galois group the alternating group A n , can be embedded in any central extension of A n if and only if n 0 ( m o d 8 ) , or n 2 ( m o d 8 ) and n is a sum of two squares. Consequently, for theses values of n , every central extension of A n occurs as a Galois group over Q .

On the inverse problem of Galois theory.

Núria Vila — 1992

Publicacions Matemàtiques

The problem of the construction of number fields with Galois group over Q a given finite groups has made considerable progress in the recent years. The aim of this paper is to survey the current state of this problem, giving the most significant methods developed in connection with it.

Page 1

Download Results (CSV)