On exact controllability for the Navier-Stokes equations
We study the local exact controllability problem for the Navier-Stokes equations that describe an incompressible fluid flow in a bounded domain with control distributed in an arbitrary fixed subdomain. The result that we obtain in this paper is as follows. Suppose that we have a given stationary point of the Navier-Stokes equations and our initial condition is sufficiently close to it. Then there exists a locally distributed control such that in a given moment of time the solution of the Navier-Stokes...
An optimal control problem for a model for stationary, low Mach number, highly nonisothermal, viscous flows is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. The existence of solutions of a boundary value problem for the model equations is established as is the existence of solutions of the optimal control problem. Then, a derivation of an optimality system, , a boundary value problem from which...
Page 1