The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Theta functions of quadratic forms over imaginary quadratic fields

Olav K. Richter — 2000

Acta Arithmetica

1. Introduction. Let Q be a positive definite n × n matrix with integral entries and even diagonal entries. It is well known that the theta function ϑ Q ( z ) : = g n e x p π i t g Q g z , Im z > 0, is a modular form of weight n/2 on Γ 0 ( N ) , where N is the level of Q, i.e. N Q - 1 is integral and N Q - 1 has even diagonal entries. This was proved by Schoeneberg [5] for even n and by Pfetzer [3] for odd n. Shimura [6] uses the Poisson summation formula to generalize their results for arbitrary n and he also computes the theta multiplier explicitly....

Congruences for Siegel modular forms

Dohoon ChoiYoungJu ChoieOlav K. Richter — 2011

Annales de l’institut Fourier

We employ recent results on Jacobi forms to investigate congruences and filtrations of Siegel modular forms of degree 2 . In particular, we determine when an analog of Atkin’s U ( p ) -operator applied to a Siegel modular form of degree 2 is nonzero modulo a prime p . Furthermore, we discuss explicit examples to illustrate our results.

Page 1

Download Results (CSV)