The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let Vₙ(P,Q) denote the generalized Lucas sequence with parameters P and Q. For all odd relatively prime values of P and Q such that P² + 4Q > 0, we determine all indices n such that Vₙ(P,Q) = 7kx² when k|P. As an application, we determine all indices n such that the equation Vₙ = 21x² has solutions.
In this study, we determine when the Diophantine equation has an infinite number of positive integer solutions and for Moreover, we give all positive integer solutions of the same equation for in terms of generalized Fibonacci sequence. Lastly, we formulate a conjecture related to the Diophantine equation .
Download Results (CSV)