Sharp maximal inequality for martingales and stochastic integrals.
We study sharp weak-type inequalities for a wide class of Fourier multipliers resulting from modulation of the jumps of Lévy processes. In particular, we obtain optimal estimates for second-order Riesz transforms, which lead to interesting a priori bounds for smooth functions on ℝd. The proofs rest on probabilistic methods: we deduce the above inequalities from the corresponding estimates for martingales. To obtain the lower bounds, we exploit the properties of laminates, important probability measures...
Let N ≥ 2 be a given integer. Suppose that is a martingale difference sequence with values in and let be a deterministic sequence of signs. The paper contains the proof of the estimate . It is shown that this result is asymptotically sharp in the sense that the least constant in the above estimate satisfies . The novelty in the proof is the explicit verification of the ζ-convexity of the space .
We study logarithmic estimates for a class of Fourier multipliers which arise from a nonsymmetric modulation of jumps of Lévy processes. In particular, this leads to corresponding tight bounds for second-order Riesz transforms on .
We determine the optimal constants in the moment inequalities , 1 ≤ p< q< ∞, where f = (fₙ), g = (gₙ) are two martingales, adapted to the same filtration, satisfying |dgₙ| ≤ |dfₙ|, n = 0,1,2,..., with probability 1. Furthermore, we establish related sharp estimates ||g||₁ ≤ supₙΦ(|fₙ|) + L(Φ), where Φ is an increasing convex function satisfying certain growth conditions and L(Φ) depends only on Φ.
We establish the following sharp local estimate for the family of Riesz transforms on . For any Borel subset A of and any function , , 1 < p < ∞. Here q = p/(p-1) is the harmonic conjugate to p, , 1 < p < 2, and , 2 ≤ p < ∞. This enables us to determine the precise values of the weak-type constants for Riesz transforms for 1 < p < ∞. The proof rests on appropriate martingale inequalities, which are of independent interest.
Let be the Haar system on [0,1]. We show that for any vectors from a separable Hilbert space and any , k = 0,1,2,..., we have the sharp inequality , n = 0,1,2,..., where W([0,1]) is the weak- space introduced by Bennett, DeVore and Sharpley. The above estimate is generalized to the sharp weak-type bound , where X and Y stand for -valued martingales such that Y is differentially subordinate to X. An application to harmonic functions on Euclidean domains is presented.
Assume that , are continuous-path martingales taking values in , , such that is differentially subordinate to . The paper contains the proof of the maximal inequality The constant is shown to be the best possible, even in the one-dimensional setting of stochastic integrals with respect to a standard Brownian motion. The proof uses Burkholder’s method and rests on the construction of an appropriate special function.
We prove sharp a priori estimates for the distribution function of the dyadic maximal function ℳ ϕ, when ϕ belongs to the Lorentz space , 1 < p < ∞, 1 ≤ q < ∞. The approach rests on a precise evaluation of the Bellman function corresponding to the problem. As an application, we establish refined weak-type estimates for the dyadic maximal operator: for p,q as above and r ∈ [1,p], we determine the best constant such that for any , .
Given a Hilbert space valued martingale (Mₙ), let (M*ₙ) and (Sₙ(M)) denote its maximal function and square function, respectively. We prove that 𝔼|Mₙ| ≤ 2𝔼 Sₙ(M), n=0,1,2,..., 𝔼 M*ₙ ≤ 𝔼 |Mₙ| + 2𝔼 Sₙ(M), n=0,1,2,.... The first inequality is sharp, and it is strict in all nontrivial cases.
Suppose f = (fₙ), g = (gₙ) are martingales with respect to the same filtration, satisfying , n = 1,2,..., with probability 1. Under some assumptions on f₀, g₀ and an additional condition that one of the processes is nonnegative, some sharp inequalities between the pth norms of f and g, 0 < p < ∞, are established. As an application, related sharp inequalities for stochastic integrals and harmonic functions are obtained.
Let f be a conditionally symmetric martingale and let S(f) denote its square function. (i) For p,q > 0, we determine the best constants such that . Furthermore, the inequality extends to the case of Hilbert space valued f. (ii) For N = 1,2,... and q > 0, we determine the best constants such that . These bounds are extended to sums of conditionally symmetric variables which are not necessarily integrable. In addition, we show that neither of the inequalities above holds if the conditional...
Let α ∈ [0,1] be a fixed parameter. We show that for any nonnegative submartingale X and any semimartingale Y which is α-subordinate to X, we have the sharp estimate . Here W is the weak- space introduced by Bennett, DeVore and Sharpley. The inequality is already sharp in the context of α-subordinate Itô processes.
Assume that u, v are conjugate harmonic functions on the unit disc of ℂ, normalized so that u(0) = v(0) = 0. Let u*, |v|* stand for the one- and two-sided Brownian maxima of u and v, respectively. The paper contains the proof of the sharp weak-type estimate ℙ(|v|* ≥ 1)≤ (1 + 1/3² + 1/5² + 1/7² + ...)/(1 - 1/3² + 1/5² - 1/7² + ...) 𝔼u*. Actually, this estimate is shown to be true in the more general setting of differentially subordinate harmonic functions defined...
Consider the sequence of positive numbers defined by C₁ = 1 and , n = 1,2,.... Let M be a real-valued martingale and let S(M) denote its square function. We establish the bound |Mₙ|≤ Cₙ Sₙ(M), n=1,2,..., and show that for each n, the constant Cₙ is the best possible.
Let df be a Hilbert-space-valued martingale difference sequence. The paper is devoted to a new, elementary proof of the estimate with as p → ∞.
For any locally integrable f on ℝⁿ, we consider the operators S and T which average f over balls of radius |x| and center 0 and x, respectively: , for x ∈ ℝⁿ. The purpose of the paper is to establish sharp localized LlogL estimates for S and T. The proof rests on a corresponding one-weight estimate for a martingale maximal function, a result which is of independent interest.
Let f be a nonnegative submartingale and S(f) denote its square function. We show that for any λ > 0, , and the constant π/2 is the best possible. The inequality is strict provided ∥f∥₁ ≠ 0.
Page 1 Next