In the frame structure of stacker cranes harmful mast vibrations may appear due to the inertial forces of acceleration or the braking movement phase. This effect may reduce the stability and positioning accuracy of these machines. Unfortunately, their dynamic properties also vary with the lifted load magnitude and position. The purpose of the paper is to present a controller design method which can handle the effect of a varying lifted load magnitude and position in a dynamic model and at the same...
The aim of the paper is to present a supervisory decentralized architecture for the design and development of reconfigurable and fault-tolerant control systems in road vehicles. The performance specifications are guaranteed by local controllers, while the coordination of these components is provided by a supervisor. Since the monitoring components and FDI filters provide the supervisor with information about the various vehicle maneuvers and the different fault operations, it is able to make decisions...
In the paper, an analysis method is applied to the lateral stabilization problem of vehicle systems. The aim is to find the largest state-space region in which the lateral stability of the vehicle can be guaranteed by the peak-bounded control input. In the analysis, the nonlinear polynomial sum-of-squares programming method is applied. A practical computation technique is developed to calculate the maximum controlled invariant set of the system. The method calculates the maximum controlled invariant...
Download Results (CSV)