On a conjecture of J. Zinn
The article contains no abstract
The article contains no abstract
This paper gives upper and lower bounds for moments of sums of independent random variables which satisfy the condition , where are concave functions. As a consequence we obtain precise information about the tail probabilities of linear combinations of independent random variables for which for some fixed 0 < r ≤ 1. This complements work of Gluskin and Kwapień who have done the same for convex functions N.
Page 1