The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study the asymptotics of first-order nonlinear difference equations. In particular we present an asymptotic functional equation for potential asymptotic behaviour, and a theorem stating sufficient conditions for the existence of an actual solution with such asymptotic behaviour.
A graph is a minimal claw-free graph (m.c.f. graph) if it contains no (claw) as an induced subgraph and if, for each edge of , contains an induced claw. We investigate properties of m.c.f. graphs, establish sharp bounds on their orders and the degrees of their vertices, and characterize graphs which have m.c.f. line graphs.
Download Results (CSV)