The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We present a new criterion for the weighted boundedness of multiplier operators for Laguerre and Hermite expansions that arise from a Laplace-Stieltjes transform. As a special case, we recover known results on weighted estimates for Laguerre and Hermite fractional integrals with a unified and simpler approach.
We study the continuity and compactness of embeddings for radial Besov and Triebel-Lizorkin spaces with weights in the Muckenhoupt class . The main tool is a discretization in terms of an almost orthogonal wavelet expansion adapted to the radial situation.
Download Results (CSV)