The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Primitive substitutive numbers are closed under rational multiplication

Pallavi KetkarLuca Q. Zamboni — 1998

Journal de théorie des nombres de Bordeaux

Let M ( r ) denote the set of real numbers α whose base- r digit expansion is ultimately primitive substitutive, i.e., contains a tail which is the image (under a letter to letter morphism) of a fixed point of a primitive substitution. We show that the set M ( r ) is closed under multiplication by rational numbers, but not closed under addition.

Page 1

Download Results (CSV)