We study minimal thinness in the half-space for a large class of subordinate Brownian motions. We show that the same test for the minimal thinness of a subset of below the graph of a nonnegative Lipschitz function is valid for all processes in the considered class. In the classical case of Brownian motion this test was proved by Burdzy.
We consider the fractional Laplacian on an open subset in with zero exterior condition. We establish sharp two-sided estimates for the heat kernel of such a Dirichlet fractional Laplacian in open sets. This heat kernel is also the transition density of a rotationally symmetric -stable process killed upon leaving a open set. Our results are the first sharp twosided estimates for the Dirichlet heat kernel of a non-local operator on open sets.
Download Results (CSV)