On a system of equations with primes
Given an integer , let be pairwise coprime integers , a family of nonempty proper subsets of with “enough” elements, and a function . Does there exist at least one prime such that divides for some , but it does not divide ? We answer this question in the positive when the are prime powers and and are subjected to certain restrictions. We use the result to prove that, if and is a set of three or more primes that contains all prime divisors of any number of...