On a system of equations with primes

Paolo Leonetti[1]; Salvatore Tringali[2]

  • [1] Università Bocconi via Sarfatti 25 20100 Milan, Italy
  • [2] Texas A&M University at Qatar PO Box 23874 Education City DOHA, 5825 QATAR

Journal de Théorie des Nombres de Bordeaux (2014)

  • Volume: 26, Issue: 2, page 399-413
  • ISSN: 1246-7405

Abstract

top
Given an integer n 3 , let u 1 , ... , u n be pairwise coprime integers 2 , 𝒟 a family of nonempty proper subsets of { 1 , ... , n } with “enough” elements, and ε a function 𝒟 { ± 1 } . Does there exist at least one prime q such that q divides i I u i - ε ( I ) for some I 𝒟 , but it does not divide u 1 u n ? We answer this question in the positive when the u i are prime powers and ε and 𝒟 are subjected to certain restrictions.We use the result to prove that, if ε 0 { ± 1 } and A is a set of three or more primes that contains all prime divisors of any number of the form p B p - ε 0 for which B is a finite nonempty proper subset of A , then A contains all the primes.

How to cite

top

Leonetti, Paolo, and Tringali, Salvatore. "On a system of equations with primes." Journal de Théorie des Nombres de Bordeaux 26.2 (2014): 399-413. <http://eudml.org/doc/275688>.

@article{Leonetti2014,
abstract = {Given an integer $n \ge 3$, let $u_1, \ldots , u_n$ be pairwise coprime integers $\ge 2$, $\mathcal\{D\}$ a family of nonempty proper subsets of $\lbrace 1, \ldots , n\rbrace $ with “enough” elements, and $\varepsilon $ a function $ \mathcal\{D\} \rightarrow \lbrace \pm 1\rbrace $. Does there exist at least one prime $q$ such that $q$ divides $\prod _\{i \in I\} u_i - \varepsilon (I)$ for some $I \in \mathcal\{D\}$, but it does not divide $u_1 \cdots u_n$? We answer this question in the positive when the $u_i$ are prime powers and $\varepsilon $ and $\mathcal\{D\}$ are subjected to certain restrictions.We use the result to prove that, if $\varepsilon _0 \in \lbrace \pm 1\rbrace $ and $A$ is a set of three or more primes that contains all prime divisors of any number of the form $\prod _\{p \in B\} p - \varepsilon _0$ for which $B$ is a finite nonempty proper subset of $A$, then $A$ contains all the primes.},
affiliation = {Università Bocconi via Sarfatti 25 20100 Milan, Italy; Texas A&M University at Qatar PO Box 23874 Education City DOHA, 5825 QATAR},
author = {Leonetti, Paolo, Tringali, Salvatore},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Agoh-Giuga conjecture; cyclic congruences; prime factorization; Pillai’s equation; Znam’s problem; Pillai's equation; Znam's problem},
language = {eng},
month = {10},
number = {2},
pages = {399-413},
publisher = {Société Arithmétique de Bordeaux},
title = {On a system of equations with primes},
url = {http://eudml.org/doc/275688},
volume = {26},
year = {2014},
}

TY - JOUR
AU - Leonetti, Paolo
AU - Tringali, Salvatore
TI - On a system of equations with primes
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2014/10//
PB - Société Arithmétique de Bordeaux
VL - 26
IS - 2
SP - 399
EP - 413
AB - Given an integer $n \ge 3$, let $u_1, \ldots , u_n$ be pairwise coprime integers $\ge 2$, $\mathcal{D}$ a family of nonempty proper subsets of $\lbrace 1, \ldots , n\rbrace $ with “enough” elements, and $\varepsilon $ a function $ \mathcal{D} \rightarrow \lbrace \pm 1\rbrace $. Does there exist at least one prime $q$ such that $q$ divides $\prod _{i \in I} u_i - \varepsilon (I)$ for some $I \in \mathcal{D}$, but it does not divide $u_1 \cdots u_n$? We answer this question in the positive when the $u_i$ are prime powers and $\varepsilon $ and $\mathcal{D}$ are subjected to certain restrictions.We use the result to prove that, if $\varepsilon _0 \in \lbrace \pm 1\rbrace $ and $A$ is a set of three or more primes that contains all prime divisors of any number of the form $\prod _{p \in B} p - \varepsilon _0$ for which $B$ is a finite nonempty proper subset of $A$, then $A$ contains all the primes.
LA - eng
KW - Agoh-Giuga conjecture; cyclic congruences; prime factorization; Pillai’s equation; Znam’s problem; Pillai's equation; Znam's problem
UR - http://eudml.org/doc/275688
ER -

References

top
  1. M. Aigner and G. M. Ziegler, Proofs from THE BOOK. 4th ed., Springer, (2010). Zbl1185.00001MR2569612
  2. M. Becheanu, M. Andronache, M. Bălună, R. Gologan, D. Şerbănescu, and V. Vornicu, Romanian Mathematical Competitions 2003. Societatea de Ştiinţe Matematice din România, (2003). 
  3. A. R. Booker, On Mullin’s second sequence of primes. Integers A12, (2012), #A4. Zbl1317.11013MR3011555
  4. D. Borwein, J. M. Borwein, P. B. Borwein, and R. Girgensohn, Giuga’s conjecture on primality. Amer. Math. Monthly 103, (1996), 40–50. Zbl0860.11003MR1369150
  5. L. Brenton and A. Vasiliu, Znám’s problem. Math. Mag. 75, 1 (2002), 3–11. MR2107286
  6. Y. Bugeaud and F. Luca, On Pillai’s Diophantine equation. New York J. Math. 12 (2006), 193–217. Zbl1136.11026MR2242533
  7. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 6th ed. (revised by D.R. Heath-Brown and J.H. Silverman), Oxford University Press, 2008. Zbl1159.11001MR2445243
  8. J. C. Lagarias, Cyclic systems of simultaneous congruences. Int. J. Number Theory 6, 2 (2010), 219–245. Zbl1243.11050MR2646755
  9. F. Luca, On the diophantine equation p x 1 - p x 2 = q y 1 - q y 2 . Indag. Mathem. (N.S.) 14, 2 (2003), 207–222. Zbl1080.11031MR2026815
  10. R. A. Mollin, Algebraic Number Theory. Discrete Mathematics and Its Applications, 2nd ed., Chapman and Hall/CRC, (2011). Zbl0930.11001MR2779314
  11. A. A. Mullin, Recursive function theory (a modern look at a Euclidean idea). Bull. Amer. Math. Soc. 69, (1963), 737. 
  12. W. Narkiewicz, The Development of Prime Number Theory. Springer-Verlag, (2000). Zbl0942.11002MR1756780
  13. K. Zsigmondy, Zur Theorie der Potenzreste. Monatsh. Math. 3, 1 (1892), 265–284. MR1546236

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.