The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
This paper deals with a class of nonlinear control systems in in presence of deterministic uncertainty. The uncertainty is modelled by a multivalued map F with nonempty, closed, convex values. Given a nonempty closed set from a suitable class, which includes the convex sets, we solve the problem of finding a state feedback ū(t,x) in such a way that K is invariant under any system dynamics f. As a system dynamics we consider any continuous selection of the uncertain controlled dynamics F.
Si danno condizioni di suriettività per applicazioni multivoche in spazi di Banach.
We consider a class of singularly perturbed systems of semilinear parabolic differential inclusions in infinite dimensional spaces. For such a class we prove a Tikhonov-type theorem for a suitably defined subset of the set of all solutions for ε ≥ 0, where ε is the perturbation parameter. Specifically, assuming the existence of a Lipschitz selector of the involved multivalued maps we can define a nonempty subset of the solution set of the singularly perturbed system. This subset is the set of...
For a nonlinear hyperbolic equation defined in a thin domain we prove the existence of a periodic solution with respect to time both in the non-autonomous and autonomous cases. The methods employed are a combination of those developed by J. K. Hale and G. Raugel and the theory of the topological degree.
Download Results (CSV)