The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Convergenza per l'equazione degli integrali primi associata al problema del rimbalzo

Michele CarrieroAntonio LeaciEduardo Pascali — 1982

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this paper we present a few results on convergence for the prime integrals equations connected with the bounce problem. This approach allows both to prove uniqueness for the one-dimensional bounce problem for almost all permissible Cauchy data (see also [6]) and to deepen previous results (see [3], [5], [7]).

Integrals with respect to a Radon measure added to area type functionals: semi-continuity and relaxation

Michele CarrieroAntonio LeaciEduardo Pascali — 1985

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Diamo condizioni sulle funzioni f , g e sulla misura μ affinché il funzionale F ( u ) = Ω f ( x , u , D u ) d x + Ω ¯ g ( x , u ) d μ sia L 1 ( Ω ) -semicontinuo inferiormente su W 1 , 1 ( Ω ) C 0 ( Ω ¯ ) . Affrontiamo successivamente il problema del rilassamento.

Integrals with respect to a Radon measure added to area type functionals: semi-continuity and relaxation

Michele CarrieroAntonio LeaciEduardo Pascali — 1985

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Diamo condizioni sulle funzioni f , g e sulla misura μ affinché il funzionale F ( u ) = Ω f ( x , u , D u ) 𝑑 x + Ω ¯ g ( x , u ) 𝑑 μ sia L 1 ( Ω ) -semicontinuo inferiormente su W 1 , 1 ( Ω ) C 0 ( Ω ¯ ) . Affrontiamo successivamente il problema del rilassamento.

Convergenza per l'equazione degli integrali primi associata al problema del rimbalzo

Michele CarrieroAntonio LeaciEduardo Pascali — 1982

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

In this paper we present a few results on convergence for the prime integrals equations connected with the bounce problem. This approach allows both to prove uniqueness for the one-dimensional bounce problem for almost all permissible Cauchy data (see also [6]) and to deepen previous results (see [3], [5], [7]).

Page 1

Download Results (CSV)