The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Like the classical Gram-Schmidt theorem for symplectic vector spaces, the sheaf-theoretic version (in which the coefficient algebra sheaf is appropriately chosen) shows that symplectic -morphisms on free -modules of finite rank, defined on a topological space , induce canonical bases (Theorem 1.1), called symplectic bases. Moreover (Theorem 2.1), if is an -module (with respect to a -algebra sheaf without zero divisors) equipped with an orthosymmetric -morphism, we show, like in the classical...
Download Results (CSV)