The symplectic Gram-Schmidt theorem and fundamental geometries for -modules
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 1, page 265-278
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topNtumba, Patrice P.. "The symplectic Gram-Schmidt theorem and fundamental geometries for $\mathcal {A}$-modules." Czechoslovak Mathematical Journal 62.1 (2012): 265-278. <http://eudml.org/doc/246946>.
@article{Ntumba2012,
abstract = {Like the classical Gram-Schmidt theorem for symplectic vector spaces, the sheaf-theoretic version (in which the coefficient algebra sheaf $\mathcal \{A\}$ is appropriately chosen) shows that symplectic $\mathcal \{A\}$-morphisms on free $\mathcal \{A\}$-modules of finite rank, defined on a topological space $X$, induce canonical bases (Theorem 1.1), called symplectic bases. Moreover (Theorem 2.1), if $(\mathcal \{E\}, \phi )$ is an $\mathcal \{A\}$-module (with respect to a $\mathbb \{C\}$-algebra sheaf $\mathcal \{A\}$ without zero divisors) equipped with an orthosymmetric $\mathcal \{A\}$-morphism, we show, like in the classical situation, that “componentwise” $\phi $ is either symmetric (the (local) geometry is orthogonal) or skew-symmetric (the (local) geometry is symplectic). Theorem 2.1 reduces to the classical case for any free $\mathcal \{A\}$-module of finite rank.},
author = {Ntumba, Patrice P.},
journal = {Czechoslovak Mathematical Journal},
keywords = {symplectic $\mathcal \{A\}$-modules; symplectic Gram-Schmidt theorem; symplectic basis; orthosymmetric $\mathcal \{A\}$-bilinear forms; orthogonal/symplectic geometry; strict integral domain algebra sheaf; symplectic -module; symplectic Gram-Schmidt theorem; symplectic basis; orthosymmetric -bilinear forms; orthogonal/symplectic geometry},
language = {eng},
number = {1},
pages = {265-278},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The symplectic Gram-Schmidt theorem and fundamental geometries for $\mathcal \{A\}$-modules},
url = {http://eudml.org/doc/246946},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Ntumba, Patrice P.
TI - The symplectic Gram-Schmidt theorem and fundamental geometries for $\mathcal {A}$-modules
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 1
SP - 265
EP - 278
AB - Like the classical Gram-Schmidt theorem for symplectic vector spaces, the sheaf-theoretic version (in which the coefficient algebra sheaf $\mathcal {A}$ is appropriately chosen) shows that symplectic $\mathcal {A}$-morphisms on free $\mathcal {A}$-modules of finite rank, defined on a topological space $X$, induce canonical bases (Theorem 1.1), called symplectic bases. Moreover (Theorem 2.1), if $(\mathcal {E}, \phi )$ is an $\mathcal {A}$-module (with respect to a $\mathbb {C}$-algebra sheaf $\mathcal {A}$ without zero divisors) equipped with an orthosymmetric $\mathcal {A}$-morphism, we show, like in the classical situation, that “componentwise” $\phi $ is either symmetric (the (local) geometry is orthogonal) or skew-symmetric (the (local) geometry is symplectic). Theorem 2.1 reduces to the classical case for any free $\mathcal {A}$-module of finite rank.
LA - eng
KW - symplectic $\mathcal {A}$-modules; symplectic Gram-Schmidt theorem; symplectic basis; orthosymmetric $\mathcal {A}$-bilinear forms; orthogonal/symplectic geometry; strict integral domain algebra sheaf; symplectic -module; symplectic Gram-Schmidt theorem; symplectic basis; orthosymmetric -bilinear forms; orthogonal/symplectic geometry
UR - http://eudml.org/doc/246946
ER -
References
top- Adkins, W. A., Weintraub, S. H., Algebra. An Approach via Module Theory, Springer New York (1992). (1992) Zbl0768.00003MR1181420
- Artin, E., Geometric Algebra, John Wiley & Sons/Interscience Publishers New York (1988). (1988) Zbl0642.51001MR1009557
- Berndt, R., An Introduction to Symplectic Geometry, American Mathematical Society Providence (2001). (2001) Zbl0986.53028MR1793955
- Silva, A. Cannas da, Lectures on Symplectic Geometry, Springer Berlin (2001). (2001) MR1853077
- Chambadal, L., Ovaert, J. L., Algèbre linéaire et algèbre tensorielle, Dunod Paris (1968). (1968) Zbl0186.33402MR0240108
- Crumeyrolle, A., Orthogonal and Symplectic Clifford Algebras. Spinor Structures, Kluwer Dordrecht (1990). (1990) Zbl0701.53003MR1044769
- Gosson, M. de, Symplectic Geometry and Quantum Mechanics, Birkhäuser Basel (2006). (2006) Zbl1098.81004MR2241188
- Gruenberg, K. W., Weir, A. J., Linear Geometry, 2nd edition, Springer New York, Heidelberg, Berlin (1977). (1977)
- Mallios, A., Geometry of Vector Sheaves. An Axiomatic Approach to Differential Geometry. Volume I: Vector Sheaves. General Theory, Kluwer Dordrecht (1998). (1998) Zbl0904.18001
- Mallios, A., Geometry of Vector Sheaves. An Axiomatic Approach to Differential Geometry. Volume II: Geometry. Examples and Applications, Kluwer Dordrecht (1998). (1998) Zbl0904.18002
- Mallios, A., 10.1007/s10773-007-9637-2, Int. J. Theor. Phys. 47 (2008), 1929-1948. (2008) MR2442881DOI10.1007/s10773-007-9637-2
- Mallios, A., Modern Differential Geometry in Gauge Theories. Vol. I: Maxwell Fields, Birkhäuser Boston (2006). (2006) MR2189128
- Mallios, A., Ntumba, P. P., 10.1007/s12215-009-0014-2, Rend. Circ. Mat. Palermo 58 (2009), 155-168. (2009) Zbl1184.18010MR2504993DOI10.1007/s12215-009-0014-2
- Mallios, A., Ntumba, P. P., Fundamentals for symplectic -modules. Affine Darboux theorem, Rend. Circ. Mat. Palermo 58 (2009), 169-198. (2009) MR2533910
- Mallios, A., Ntumba, P. P., Symplectic reduction of sheaves of -modules, arXiv:0802.4224.
- Mallios, A., Ntumba, P. P., 10.2989/QM.2008.31.4.8.612, Quaest. Math. 31 (2008), 397-414. (2008) MR2527450DOI10.2989/QM.2008.31.4.8.612
- Mostow, M. A., 10.4310/jdg/1214434974, J. Diff. Geom. 14 (1979), 255-293. (1979) Zbl0427.58005MR0587553DOI10.4310/jdg/1214434974
- Ntumba, P. P., 10.1007/s00009-010-0042-3, Mediterr. J. Math. 7 (2010), 445-454. (2010) MR2738570DOI10.1007/s00009-010-0042-3
- Sikorski, R., 10.4064/cm-24-1-45-79, Colloq. Math. 24 (1971), 45-79. (1971) Zbl0226.53004MR0482794DOI10.4064/cm-24-1-45-79
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.