Normal bases for infinite Galois ring extensions
We interpret the collection of invertible bimodules as a groupoid and call it the Picard groupoid. We use this groupoid to generalize the classical construction of crossed products to what we call groupoid crossed products, and show that these coincide with the class of strongly groupoid graded rings. We then use groupoid crossed products to obtain a generalization from the group graded situation to the groupoid graded case of the bijection from a second cohomology group, defined by the grading...
We introduce the abelian category R-gr of groupoid graded modules and give an answer to the following general question: If U: R-gr → R-mod denotes the functor which associates to any graded left R-module M the underlying ungraded structure U(M), when does either of the following two implications hold: (I) M has property X ⇒ U(M) has property X; (II) U(M) has property X ⇒ M has property X? We treat the cases when X is one of the properties: direct summand, free, finitely generated, finitely presented,...
Page 1