Riemannian manifolds not quasi-isometric to leaves in codimension one foliations
Every open manifold of dimension greater than one has complete Riemannian metrics with bounded geometry such that is not quasi-isometric to a leaf of a codimension one foliation of a closed manifold. Hence no conditions on the local geometry of suffice to make it quasi-isometric to a leaf of such a foliation. We introduce the ‘bounded homology property’, a semi-local property of that is necessary for it to be a leaf in a compact manifold in codimension one, up to quasi-isometry. An essential...