The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

On boundary-driven time-dependent Oseen flows

Paul Deuring — 2008

Banach Center Publications

We consider the single layer potential associated to the fundamental solution of the time-dependent Oseen system. It is shown this potential belongs to L²(0,∞,H¹(Ω)³) and to H¹(0,∞,V') if the layer function is in L²(∂Ω×(0,∞)³). (Ω denotes the complement of a bounded Lipschitz set; V denotes the set of smooth solenoidal functions in H¹₀(Ω)³.) This result means that the usual weak solution of the time-dependent Oseen function with zero initial data and zero body force may be represented by a single...

The Cauchy problem for the homogeneous time-dependent Oseen system in 3 : spatial decay of the velocity

Paul Deuring — 2013

Mathematica Bohemica

We consider the homogeneous time-dependent Oseen system in the whole space 3 . The initial data is assumed to behave as O ( | x | - 1 - ϵ ) , and its gradient as O ( | x | - 3 / 2 - ϵ ) , when | x | tends to infinity, where ϵ is a fixed positive number. Then we show that the velocity u decays according to the equation | u ( x , t ) | = O ( | x | - 1 ) , and its spatial gradient x u decreases with the rate | x | - 3 / 2 , for | x | tending to infinity, uniformly with respect to the time variable t . Since these decay rates are optimal even in the stationary case, they should also be the best possible...

Stability of a finite element method for 3D exterior stationary Navier-Stokes flows

Paul Deuring — 2007

Applications of Mathematics

We consider numerical approximations of stationary incompressible Navier-Stokes flows in 3D exterior domains, with nonzero velocity at infinity. It is shown that a P1-P1 stabilized finite element method proposed by C. Rebollo: A term by term stabilization algorithm for finite element solution of incompressible flow problems, Numer. Math. 79 (1998), 283–319, is stable when applied to a Navier-Stokes flow in a truncated exterior domain with a pointwise boundary condition on the artificial boundary....

Page 1

Download Results (CSV)