The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Proximal Point Methods (PPM) can be traced to the pioneer works of Moreau [16], Martinet [14,
15] and Rockafellar [19, 20] who used as regularization function the square of the Euclidean
norm. In this work, we study PPM in the context of optimization and we derive a class of such
methods which contains Rockafellar's result. We also present a less stringent criterion to the
acceptance of an approximate solution to the subproblems that arise in the inner loops of PPM.
Moreover, we introduce a new...
Download Results (CSV)