Stable semi-groups of measures as commutative approximate identities on non-graded homogeneous groups.
In this paper we raise the question of regularity of the densities of a symmetric stable semigroup of measures on the homogeneous group N under the mere assumption that the densities exist. (For a criterion of the existence of the densities of such semigroups see [11].)
Let A be a pseudodifferential operator on whose Weyl symbol a is a strictly positive smooth function on such that for some ϱ>0 and all |α|>0, is bounded for large |α|, and . Such an operator A is essentially selfadjoint, bounded from below, and its spectrum is discrete. The remainder term in the Weyl asymptotic formula for the distribution of the eigenvalues of A is estimated. This is done by applying the method of approximate spectral projectors of Tulovskiĭ and Shubin.
We prove the composition and L²-boundedness theorems for the Nagel-Ricci-Stein flag kernels related to the natural gradation of homogeneous groups.
Let be a symmetric α-stable semigroup of probability measures on a homogeneous group N, where 0 < α < 2. Assume that are absolutely continuous with respect to Haar measure and denote by the corresponding densities. We show that the estimate , x≠0, holds true with some integrable function Ω on the unit sphere Σ if and only if the density of the Lévy measure of the semigroup belongs locally to the Zygmund class LlogL(N╲e). The problem turns out to be related to the properties of the maximal...
Page 1