Lipschitz continuity of densities of stable semigroups of measures
Colloquium Mathematicae (1993)
- Volume: 66, Issue: 1, page 29-47
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topGłowacki, Paweł. "Lipschitz continuity of densities of stable semigroups of measures." Colloquium Mathematicae 66.1 (1993): 29-47. <http://eudml.org/doc/210232>.
@article{Głowacki1993,
abstract = {In this paper we raise the question of regularity of the densities $h_t$ of a symmetric stable semigroup $\{μ_t\}$ of measures on the homogeneous group N under the mere assumption that the densities exist. (For a criterion of the existence of the densities of such semigroups see [11].)},
author = {Głowacki, Paweł},
journal = {Colloquium Mathematicae},
keywords = {homogeneous group; dilations; accretive kernel; measures; Haar measure; convolution; holomorphic semigroup; orthogonal group; maximal function},
language = {eng},
number = {1},
pages = {29-47},
title = {Lipschitz continuity of densities of stable semigroups of measures},
url = {http://eudml.org/doc/210232},
volume = {66},
year = {1993},
}
TY - JOUR
AU - Głowacki, Paweł
TI - Lipschitz continuity of densities of stable semigroups of measures
JO - Colloquium Mathematicae
PY - 1993
VL - 66
IS - 1
SP - 29
EP - 47
AB - In this paper we raise the question of regularity of the densities $h_t$ of a symmetric stable semigroup ${μ_t}$ of measures on the homogeneous group N under the mere assumption that the densities exist. (For a criterion of the existence of the densities of such semigroups see [11].)
LA - eng
KW - homogeneous group; dilations; accretive kernel; measures; Haar measure; convolution; holomorphic semigroup; orthogonal group; maximal function
UR - http://eudml.org/doc/210232
ER -
References
top- [1] A. P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289-309. Zbl0072.11501
- [2] M. Christ, Hilbert transforms along curves. I. Nilpotent groups, Ann. of Math. 122 (1985), 575-596. Zbl0593.43011
- [3] L. Corwin and F. P. Greenleaf, Representations of Nilpotent Lie Groups and Their Applications. Part 1: Basic Theory and Examples, Cambridge University Press, Cambridge, 1990. Zbl0704.22007
- [4] M. Duflo, Représentations de semi-groupes de mesures sur un groupe localement compact, Ann. Inst. Fourier (Grenoble) 28 (3) (1978), 225-249. Zbl0368.22006
- [5] J. Dziubański and J. Zienkiewicz, Smoothness of densities of semigroups of measures on homogeneous groups, Colloq. Math., to appear. Zbl0838.43010
- [6] G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161-207. Zbl0312.35026
- [7] G. B. Folland, Lipschitz classes and Poisson integrals on stratified groups, Studia Math. 66 (1979), 37-55. Zbl0439.43005
- [8] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton University Press, Princeton, 1982. Zbl0508.42025
- [9] P. Głowacki, Stable semigroups of measures on the Heisenberg group, Studia Math. 79 (1984), 105-138. Zbl0563.43002
- [10] P. Głowacki, Stable semi-groups of measures as commutative approximate identities on non- graded homogeneous groups, Invent. Math. 83 (1986), 557-582. Zbl0595.43006
- [11] P. Głowacki, The Rockland condition for nondifferential convolution operators, Duke Math. J. 58 (1989), 371-395. Zbl0678.43002
- [12] P. Głowacki and W. Hebisch, Pointwise estimates for the densities of stable semigroups of measures, Studia Math. 104 (1993), 243-258. Zbl0812.43005
- [13] P. Głowacki and A. Hulanicki, A semi-group of probability measures with non- smooth differentiable densities on a Lie group, Colloq. Math. 51 (1987), 131-139. Zbl0629.43001
- [14] B. Helffer et J. Nourrigat, Caractérisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe gradué, Comm. Partial Differential Equations 4 (8) (1979), 899-958. Zbl0423.35040
- [15] A. Hulanicki, A class of convolution semi-groups of measures on a Lie group, in: Lecture Notes in Math. 828, Springer, 1980, 82-101. Zbl0462.28009
- [16] G. Hunt, Semigroups of measures on Lie groups, Trans. Amer. Math. Soc. 81 (1956), 264-293. Zbl0073.12402
- [17] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.
- [18] E. M. Stein, Boundary behavior of harmonic functions on symmetric spaces: maximal estimates for Poisson integrals, Invent. Math. 74 (1983), 63-83. Zbl0522.43007
- [19] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, 1975. Zbl0232.42007
- [20] K. Yosida, Functional Analysis, Springer, Berlin, 1980.
- [21] F. Zo, A note on approximation of the identity, Studia Math. 55 (1976), 111-122. Zbl0326.44005
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.