Convergence of global solutions to stationary solutions for a class of degenerate parabolic systems related to the p-Laplacian operator is proved. A similar result is obtained for a variable exponent p. In the case of p constant, the convergence is proved to be , and in the variable exponent case, L² and -weak.
Ordinary differential equations all share the same common root-real physical problems. But, although the physical motivation remains the most important one, the way the subject develops does depend highly on the methods available. In the exposition I would like to show some connections between two methods of checking the ODE for integrability (whatever it should mean), with distant motivations and techniques. These are the so-called Painlevé tests and the methods originating in Ziglin's theory and...
We consider a class of fourth order elliptic systems which include the Euler-Lagrange equations of biharmonic mappings in dimension 4 and we prove that a weak limit of weak solutions to such systems is again a weak solution to a limit system.
Download Results (CSV)