The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Convergence of global solutions to stationary solutions for a class of degenerate parabolic systems related to the p-Laplacian operator is proved. A similar result is obtained for a variable exponent p. In the case of p constant, the convergence is proved to be , and in the variable exponent case, L² and -weak.
Ordinary differential equations all share the same common root-real physical problems. But, although the physical motivation remains the most important one, the way the subject develops does depend highly on the methods available. In the exposition I would like to show some connections between two methods of checking the ODE for integrability (whatever it should mean), with distant motivations and techniques. These are the so-called Painlevé tests and the methods originating in Ziglin's theory and...
We consider a class of fourth order elliptic systems which include the Euler-Lagrange equations of biharmonic mappings in dimension 4 and we prove that a weak limit of weak solutions to such systems is again a weak solution to a limit system.
Download Results (CSV)