The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
If is a space that can be mapped onto a metric space by a one-to-one mapping, then is said to have a weaker metric topology. In this paper, we give characterizations of sequence-covering compact images and sequentially-quotient compact images of spaces with a weaker metric topology. The main results are that (1) is a sequence-covering compact image of a space with a weaker metric topology if and only if has a sequence of point-finite -covers such that for each . (2) is a sequentially-quotient...
The main purpose of this paper is to establish general conditions under which -spaces are compact-covering images of metric spaces by using the concept of -covers. We generalize a series of results on compact-covering open images and sequence-covering quotient images of metric spaces, and correct some mapping characterizations of -metrizable spaces by compact-covering -maps and -maps.
A topological space is called mesocompact (sequentially mesocompact) if for every open cover of , there exists an open refinement of such that is finite for every compact set (converging sequence including its limit point) in . In this paper, we give some characterizations of mesocompact (sequentially mesocompact) spaces using selection theory.
Download Results (CSV)