Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Continuous pluriharmonic boundary values

Per ÅhagRafał Czyż — 2007

Annales Polonici Mathematici

Let D j be a bounded hyperconvex domain in n j and set D = D × × D s , j=1,...,s, s≥ 3. Also let ₙ be the symmetrized polydisc in ℂⁿ, n ≥ 3. We characterize those real-valued continuous functions defined on the boundary of D or ₙ which can be extended to the inside to a pluriharmonic function. As an application a complete characterization of the compliant functions is obtained.

On the Dirichlet problem in the Cegrell classes

Rafał CzyżPer Åhag — 2004

Annales Polonici Mathematici

Let μ be a non-negative measure with finite mass given by φ ( d d c ψ ) , where ψ is a bounded plurisubharmonic function with zero boundary values and φ L q ( ( d d c ψ ) ) , φ ≥ 0, 1 ≤ q ≤ ∞. The Dirichlet problem for the complex Monge-Ampère operator with the measure μ is studied.

Radially symmetric plurisubharmonic functions

Per ÅhagRafał CzyżLeif Persson — 2012

Annales Polonici Mathematici

In this note we consider radially symmetric plurisubharmonic functions and the complex Monge-Ampère operator. We prove among other things a complete characterization of unitary invariant measures for which there exists a solution of the complex Monge-Ampère equation in the set of radially symmetric plurisubharmonic functions. Furthermore, we prove in contrast to the general case that the complex Monge-Ampère operator is continuous on the set of radially symmetric plurisubharmonic functions. Finally...

Page 1

Download Results (CSV)