Euclidean quadratic forms and ADC forms: I
Motivated by recent work of Florian Pop, we study the connections between three notions of equivalence of function fields: isomorphism, elementary equivalence, and the condition that each of a pair of fields can be embedded in the other, which we call isogeny. Some of our results are purely geometric: we give an isogeny classification of Severi-Brauer varieties and quadric surfaces. These results are applied to deduce new instances of “elementary equivalence implies isomorphism”: for all genus zero...
Let be a complete discretely valued field with perfect residue field . Assuming upper bounds on the relation between period and index for WC-groups over , we deduce corresponding upper bounds on the relation between period and index for WC-groups over . Up to a constant depending only on the dimension of the torsor, we recover theorems of Lichtenbaum and Milne in a “duality free” context. Our techniques include the use of of torsors under abelian varieties with good reduction and a generalization...
We study ADC quadratic forms and Euclidean quadratic forms over the integers, obtaining complete classification results in the positive case.
Page 1