For various domination-related parameters involving locating devices (distinguishing sets) that function as places from which detectors can determine information about the location of an “intruder”, several types of possible detector faults are identified. Two of these fault tolerant detector types for distinguishing sets are considered here, namely redundant distinguishing and detection distinguishing. Illustrating these concepts, we focus primarily on open-locating-dominating sets.
A dominating set S of a graph G is called efficient if |N[v]∩ S| = 1 for every vertex v ∈ V(G). That is, a dominating set S is efficient if and only if every vertex is dominated exactly once. In this paper, we investigate efficient multiple domination. There are several types of multiple domination defined in the literature: k-tuple domination, {k}-domination, and k-domination. We investigate efficient versions of the first two as well as a new type of multiple domination.
For a set D of positive integers, we define a vertex set S ⊆ V(G) to be D-independent if u, v ∈ S implies the distance d(u,v) ∉ D. The D-independence number is the maximum cardinality of a D-independent set. In particular, the independence number . Along with general results we consider, in particular, the odd-independence number where ODD = 1,3,5,....
A set D of vertices in a graph G = (V,E) is a locating-dominating set (LDS) if for every two vertices u,v of V-D the sets N(u)∩ D and N(v)∩ D are non-empty and different. The locating-domination number is the minimum cardinality of a LDS of G, and the upper locating-domination number, is the maximum cardinality of a minimal LDS of G. We present different bounds on and .
Download Results (CSV)