We discuss the problem of characterizing the possible asymptotic behaviour of the iterates of a sufficiently smooth nonlinear operator acting in a Banach space in small neighbourhoods of a fixed point. It turns out that under natural conditions, for the most part of initial approximations these iterates tend to "lie down" along a finite-dimensional subspace generated by the leading (peripherical) eigensubspaces of the Fréchet derivative at the fixed point and moreover the asymptotic behaviour of...
We discuss the problem of characterizing the possible asymptotic behaviour of the norm of the iterates of a bounded linear operator between two Banach spaces. In particular, given an increasing sequence of positive numbers tending to infinity, we construct Banach spaces such that the norm of the iterates of a suitable multiplication operator between these spaces assumes (or exceeds) the values of this sequence.
CONTENTSIntroduction.......................................................................................................... 51. Multifunctions and selections............................................................................... 7 1. Multifunctions and selections.................................................................. 7 2. Continuous multifunctions and selections........................................... 9 3. Measurable multifunctions and selections...............................................
Download Results (CSV)