Multi-valued superpositions
Jürgen Appell; Nguyêñ Hôǹg Thái; Espedito De Pascale; Petr P. Zabreĭko
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1995
Access Full Book
topAbstract
topHow to cite
topJürgen Appell, et al. Multi-valued superpositions. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1995. <http://eudml.org/doc/268363>.
@book{JürgenAppell1995,
abstract = {CONTENTSIntroduction.......................................................................................................... 51. Multifunctions and selections............................................................................... 7 1. Multifunctions and selections.................................................................. 7 2. Continuous multifunctions and selections........................................... 9 3. Measurable multifunctions and selections............................................ 162. Multifunctions of two variables............................................................................... 19 4. Carathéodory multifunctions and selections......................................... 19 5. The Scorza Dragoni property..................................................................... 25 6. Implicit function theorems......................................................................... 323. The superposition operator................................................................................... 33 7. The superposition operator in the space S........................................... 34 8. The superposition operator in ideal spaces......................................... 39 9. The superposition operator in the space C........................................... 474. Closures and convexifications.............................................................................. 49 10. Strong closures........................................................................................ 49 11. Convexifications....................................................................................... 52 12. Weak closures.......................................................................................... 565. Fixed points and integral inclusions..................................................................... 59 13. Fixed point theorems for multi-valued operators................................ 60 14. Hammerstein integral inclusions........................................................ 63 15. A reduction method................................................................................... 686. Applications............................................................................................................... 72 16. Applications to elliptic systems.............................................................. 72 17. Applications to nonlinear oscillations................................................. 75 18. Applications to relay problems.............................................................. 78References.................................................................................................................... 81Index of symbols........................................................................................................... 93Index of terms................................................................................................................ 95},
author = {Jürgen Appell, Nguyêñ Hôǹg Thái, Espedito De Pascale, Petr P. Zabreĭko},
keywords = {multi-valued map; superposition operator; continuous selection; measurable selection; Carathéodory condition; Scorza Dragoni condition; function space; fixed point principle; Hammerstein inclusion; mechanical; system; nonlinear oscillation; relay problem; Banach modules; multi-valued function; selections; Michael's selection principle; functions of two variables; differential inclusions; continuity and boundedness properties; extension; strong closure; weak closure; convexification; fixed point theorems; nonlinear integral inclusions of Hammerstein type; elliptic system; critical points for nonsmooth energy functionals; forced periodic oscillations; Hammerstein integral inclusions},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Multi-valued superpositions},
url = {http://eudml.org/doc/268363},
year = {1995},
}
TY - BOOK
AU - Jürgen Appell
AU - Nguyêñ Hôǹg Thái
AU - Espedito De Pascale
AU - Petr P. Zabreĭko
TI - Multi-valued superpositions
PY - 1995
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction.......................................................................................................... 51. Multifunctions and selections............................................................................... 7 1. Multifunctions and selections.................................................................. 7 2. Continuous multifunctions and selections........................................... 9 3. Measurable multifunctions and selections............................................ 162. Multifunctions of two variables............................................................................... 19 4. Carathéodory multifunctions and selections......................................... 19 5. The Scorza Dragoni property..................................................................... 25 6. Implicit function theorems......................................................................... 323. The superposition operator................................................................................... 33 7. The superposition operator in the space S........................................... 34 8. The superposition operator in ideal spaces......................................... 39 9. The superposition operator in the space C........................................... 474. Closures and convexifications.............................................................................. 49 10. Strong closures........................................................................................ 49 11. Convexifications....................................................................................... 52 12. Weak closures.......................................................................................... 565. Fixed points and integral inclusions..................................................................... 59 13. Fixed point theorems for multi-valued operators................................ 60 14. Hammerstein integral inclusions........................................................ 63 15. A reduction method................................................................................... 686. Applications............................................................................................................... 72 16. Applications to elliptic systems.............................................................. 72 17. Applications to nonlinear oscillations................................................. 75 18. Applications to relay problems.............................................................. 78References.................................................................................................................... 81Index of symbols........................................................................................................... 93Index of terms................................................................................................................ 95
LA - eng
KW - multi-valued map; superposition operator; continuous selection; measurable selection; Carathéodory condition; Scorza Dragoni condition; function space; fixed point principle; Hammerstein inclusion; mechanical; system; nonlinear oscillation; relay problem; Banach modules; multi-valued function; selections; Michael's selection principle; functions of two variables; differential inclusions; continuity and boundedness properties; extension; strong closure; weak closure; convexification; fixed point theorems; nonlinear integral inclusions of Hammerstein type; elliptic system; critical points for nonsmooth energy functionals; forced periodic oscillations; Hammerstein integral inclusions
UR - http://eudml.org/doc/268363
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.