Pseudo-convex Completion of Locally Convex Topological Vector Spaces.
Dans ce travail, nous étudions la notion de fonctions plurisousharmoniques ou analytiques dans le cadre des espaces vectoriels topologiques séparés de dimension infinie sur le corps des complexes. Nous étudions des fonctions que nous appelons sous-médianes qui sont caractérisées par la propriété de la moyenne sur les droites complexes (la régularisée supérieure est alors plurisousharmonique et on prouve le lemme de Hartogs). Puis, nous considérons les différentes définitions et propriétés des fonctions...
Dans la première partie, nous étudions la pseudo-convexité dans les elc et montrons que, dans le cas normé comme dans le cas non normé, les diverses notions introduites coïncident. Dans la deuxième partie, nous étudions la convexité polynomiale et prouvons des théorèmes d’approximation du type Runge ou Oka-Weil.
Page 1