Solution de divers problèmes de Mécanique, dans lesquels les conditions imposées aux extrémités des corps, au lieu d'être invariables, sont des fonctions données du temps, et où l'on tient compte de l'inertie de toutes les parties du système.
Uno dei metodi migliori per scoprire le proprietà di un cappio chiuso è studiarne il gruppo di moltiplicazione [3], [4]. In questo breve saggio descriviamo i gruppi di moltiplicazione di una classe importante di cappi, e cioè di quella dei cappi flessibili che posseggono la proprietà inversa.
Commutative Moufang loops were amongst the first (nonassociative) loops to be investigated; a great deal is known about their structure. More generally, the interplay of commutativity and associativity in (not necessarily commutative) Moufang loops is well known, e.g., the many associator identities and inner mapping identities involving commutant elements, especially those involving the exponent three. Here, we investigate all of this in the variety of Bol loops.
In a series of papers from the 1940’s and 1950’s, R.H. Bruck and L.J. Paige developed a provocative line of research detailing the similarities between two important classes of loops: the diassociative A-loops and the Moufang loops ([1]). Though they did not publish any classification theorems, in 1958, Bruck’s colleague, J.M. Osborn, managed to show that diassociative, commutative A-loops are Moufang ([5]). In [2] we relaunched this now over 50 year old program by examining conditions under which...
Page 1 Next