BL-algebra of fractions relative to an -closed system.
The aim of this paper is to define the notions of pseudo-MV algebra of fractions and maximal pseudo-MV algebra of quotients for a pseudo-MV algebra (taking as a guide-line the elegant construction of complete ring of quotients by partial morphisms introduced by G. Findlay and J. Lambek-see [14], p.36). For some informal explanations of the notion of fraction see [14], p. 37. In the last part of this paper the existence of the maximal pseudo-MV algebra of quotients for a pseudo-MV algebra (Theorem...
For a BL-algebra A we denote by Ds(A) the lattice of all deductive systems of A. The aim of this paper is to put in evidence new characterizations for the meet-irreducible elements on Ds(A). Hyperarchimedean BL-algebras, too, are characterized.
Page 1