The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 26

Showing per page

Order by Relevance | Title | Year of publication

D’une variable à plusieurs variables en Analyse Complexe : les fonctions plurisousharmoniques et la positivité (1942–1962)

Pierre Lelong — 1995

Revue d'histoire des mathématiques

Henri Poincaré, à la fin du XIXe siècle, pensait déjà que le passage d’une à plusieurs variables complexes en analyse ne se réduisait pas à une simple généralisation de l’analyse à une variable. Lui-même a introduit dans n des techniques de la théorie du potentiel (fonctions sousharmoniques dans 2 n ). Cependant, l’étude systématique d’une classe invariante par les isomorphismes analytiques complexes, celle des fonctions plurisousharmoniques, débute seulement en 1942. Une autre classe invariante, celle...

Page 1 Next

Download Results (CSV)