Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Resistance Conditions and Applications

Juha KinnunenPilar Silvestre — 2013

Analysis and Geometry in Metric Spaces

This paper studies analytic aspects of so-called resistance conditions on metric measure spaces with a doubling measure. These conditions are weaker than the usually assumed Poincaré inequality, but however, they are sufficiently strong to imply several useful results in analysis on metric measure spaces. We show that under a perimeter resistance condition, the capacity of order one and the Hausdorff content of codimension one are comparable. Moreover, we have connections to the Sobolev inequality...

Interpolation of quasicontinuous functions

Joan CerdàJoaquim MartínPilar Silvestre — 2011

Banach Center Publications

If C is a capacity on a measurable space, we prove that the restriction of the K-functional K ( t , f ; L p ( C ) , L ( C ) ) to quasicontinuous functions f ∈ QC is equivalent to K ( t , f ; L p ( C ) Q C , L ( C ) Q C ) . We apply this result to identify the interpolation space ( L p , q ( C ) Q C , L p , q ( C ) Q C ) θ , q .

Page 1

Download Results (CSV)