We study an example of the balance law with a multifunction source term, coming from the theory of granular media. We prove the existence of "weak entropy solutions" to this system, using the vanishing viscosity method and compensated compactness. Because of the occurrence of a multifunction we give a new definition of the weak entropy solutions.
We study the uniqueness and L¹-stability of the Cauchy problem for a 2 × 2 system coming from the theory of granular media [9,10]. We work in a class of weak entropy solutions. The appearance of a multifunction in a source term, given by the Coulomb-Mohr friction law, requires a modification of definition of the weak entropy solution [5,6].
We consider a strongly nonlinear monotone elliptic problem in generalized Orlicz-Musielak spaces. We assume neither a Δ2 nor ∇2-condition for an inhomogeneous and anisotropic N-function but assume it to be log-Hölder continuous with respect to x. We show the existence of weak solutions to the zero Dirichlet boundary value problem. Within the proof the L ∞-truncation method is coupled with a special version of the Minty-Browder trick for non-reflexive and non-separable Banach spaces.
The paper concerns uniqueness of weak solutions to non-Newtonian fluids with nonstandard growth conditions for the Cauchy stress tensor. We recall the results on existence of weak solutions and additionally provide the proof of existence of measure-valued solutions. Motivated by the fluids of strongly inhomogeneous behaviour and having the property of rapid shear thickening we observe that the described situation cannot be captured by power-law-type rheology. We describe the growth conditions with...
Download Results (CSV)